Содержание
На главную
АТМОСФЕРНАЯ-АТОМНЫЕ

Поиск по энциклопедии:

АТМОСФЕРНАЯ ОПТИКА, раздел физики атмосферы, в к-ром изучаются оптич. явления, возникающие при прохождении света в атмосфере. Сюда относятся не только такие красочные явления, как зори, радуги, изменения цвета неба, а и менее заметные, но очень важные для практики явления, как рассеяние и излучение атмосферой видимой и невидимой радиации, поляризация небесного света, видимость предметов и т. д. А. о. составляет часть физич. оптики; она тесно переплетается с оптикой коллоидов и аэрозолей, планетных атмосфер, моря, с радиационной теплопередачей и др. Важные для А. о. результаты были получены при решении проблем физ. химии, астрофизики, океанологии, техники, а методы и результаты А. о. часто находят применение в этих науках.

Изучение оптич. свойств воздуха, моря и суши составляет прямые задачи А. о. Обратные задачи А. о. - разработка оптич. методов зондирования, т. е. определения по измеренным оптич. свойствам воздуха, моря и суши других их физ. характеристик.

Оптич. явления в нижних и верхних слоях атмосферы (слой озона и выше) различны. В верхних слоях под влиянием солнечного излучения происходят гл. обр. фотохим. реакции. Возникающие при этом возбуждённые частицы высвечивают запасённую энергию (полярные сияния, свечение ночного неба и др.). Изучением этих явлений занимается аэрономия. В данной статье они не рассматриваются.

Интерес к оптич. явлениям в атмосфере возник очень давно. Цвет неба и облаков, зори, ложные солнца и т. д. с давних пор считались предвестниками погоды. Таких примет довольно много и одно время считалось даже, что их изучение и есть главная задача А. о. Этой точки зрения придерживался рус. геофизик П. И. Броунов (30-е гг. 20 в.). Однако более подробные исследования показали, что хотя между оптическими и др. физ. явлениями в атмосфере связь несомненно существует, но часто она бывает очень сложной и неоднозначной; оптич. признаки погоды иногда противоречат друг другу. Постепенно стало ясно, что найти связь между оптич. явлениями и погодой можно, лишь изучая природу оптич. явлений и одновременно проникая в механизм физ. явлений, вызывающих изменения погоды.

Первые попытки объяснить синий цвет неба относятся к 16 в. Леонардо да Винчи объяснял синеву небесного свода тем, что белый воздух на тёмном фоне мирового пространства кажется синим. Л. Эйлер считал (1762), что "сами частицы воздуха имеют синеватый оттенок и в общей массе создают интенсивную синеву". В нач. 18 в. И. Ньютон объяснял цвет неба интерференционным отражением солнечного света от мельчайших капель воды, всегда взвешенных в воздухе. В 1809 франц. физик Д. Араго открыл, что свет неба сильно поляризован (см. Поляризация света).

Первое правильное объяснение синего цвета неба дал англ. физик Рэлей (Дж. У. Стрётт) (1871, 1881). По теории Рэлея цветные лучи, образующие солнечный спектр, рассеиваются молекулами воздуха пропорционально Л-4 (где Л-длина световой волны). Синие лучи рассеиваются, примерно, в 16 раз сильнее, чем красные. Поэтому цвет неба (рассеянный солнечный свет) - синий, а цвет Солнца (прямой солнечный свет), когда оно низко над горизонтом и лучи его проходят большой путь в атмосфере,- красный. При этом рассеянный свет должен быть сильно поляризован, а под углом 90° от направления на Солнце поляризация должна быть полной.

Измерения яркости, цвета и поляризации света неба подтвердили теорию Рэлея. Но в 1907 рус. физик Л. И.Мандельштам показал, что если тело, в том числе и воздух, строго однородно, то лучи, рассеянные отдельными молекулами, должны в результате взаимной интерференции гасить друг друга так, что никакого рассеяния вообще наблюдаться не будет. В действительности из-за хаотич. теплового движения в среде всегда возникают флуктуации плотности (т. е. случайно расположенные области сгущений и разрежений), на к-рых и происходит рассеяние. Строгая теория флуктуационного рассеяния, разработанная польск. физиком М. Смо-луховским (1908) и А. Эйнштейном (1910), привела к тем же формулам, к-рые были ранее получены в молекулярной теории Рэлея. Однако все эти работы не учитывали запылённости атмосферы. Воздух, даже самый чистый,- высоко в горах, в Арктике и Антарктике - всегда засорён органич. и минеральной пылью, частицами дыма, капельками воды или растворов. Эти частицы очень малы (радиус ок. 0,1 "м), их масса, а следовательно, и вес ничтожны, поэтому они так медленно падают на Землю, что малейший ток воздуха снова вздымает их вверх. Т. к. воздух непрерывно перемешивается, то в атмосфере всегда парит как бы сеть из мельчайших пылинок и капель, особенно густая в нижних приземных слоях. Это атмосферный аэрозоль, к-рый и является главной причиной мутности воздуха. Он уменьшает дальность видимости в реальной атмосфере, по сравнению с идеальной, приблизительно в 20 раз. Кроме аэрозоля, большую роль в оптич. явлениях ватмосфере играют водяной пар, углекислый газ и озон, хотя они составляют всего несколько % от объёма газов, из к-рых состоит воздушная смесь. Только эти газы поглощают солнечное и земное излучение и сами излучают радиацию.

В рассеянии света в атмосфере решающее значение имеет аэрозоль. Немецкий физик Г. Ми (1908) построил теорию рассеяния света частицей произвольного размера, которой широко пользуются в А. о. Эта теория была существенно развита и дополнена сов. учёными В. В. Шулейки-ным. (1924), В. А. Фоком (1946), К. С. Шифриным (1951) и голл. учёным ван Хюлстом (1957). Расчёты показывают, что характер рассеяния зависит от отношения радиуса частицы а к длине волны X и от вещества частицы. Малые частицы (а/л"1) ведут себя так же, как молекулы в теории. Рэлея, но чем больше частицы, тем слабее зависимость рассеяния от длины волны. Большие частицы (a/л"1) рассеивают свет нейтрально - все волны одинаково. Это, в частности, относится к каплям облаков, радиусы к-рых в 10-20 раз больше длины волны видимого света. Именно поэтому облака имеют белый цвет. По этой же причине небо становится белесоватым, если воздух пыльный или содержит капельки воды. В исследование яркости и поляризации неба большой вклад внесли сов. учёные В. Г. Фесенков, И. И. Тихановский, Е. В. Пясковская-Фесенкова, а в исследование прозрачности облаков, туманов, ниж. слоев атмосферы - А. А. Лебедев, И. А. Хвостиков, С. Ф. Родионов, амер. учёные Д. Стрет-тон и Г. Хаутон, французские учёные Э. и А. Васси, Ж. Брикар.

Наряду с эксперимент. работами создавались также методы расчёта распределения яркости и поляризации по небу, для чего необходимо учитывать многократность рассеяния света и отражения от земной поверхности. Для этого случая рус. физиком О. Д. Хвольсоном (1890) было предложено уравнение переноса излучения. Для безоблачного неба влияние многократного рассеяния не очень велико, но для облаков, к-рые представляют собой сильно мутные среды, это - основной фактор, без к-рого нельзя правильно рассчитать прозрачность облаков, отражение и световой режим внутри них. Большой вклад в разработку методов решения уравнения переноса внесли сов. учёные В. А. Амбарцумян (1941-43), В. В. Соболев (1956), Е. С. Кузнецов (1943-45) и индийский учёный С. Чанд-расекар (1950).

Видимость предметов обусловлена прежде всего прозрачностью воздуха, а также их отражательными свойствами. Отражение диффузно, т. е. рассеяно во все стороны (за исключением отражения от поверхности спокойной воды) и для разных поверхностей происходит по-разному, в результате чего (для несамосветящихся тел) возникает яркостный контраст предмета с фоном. Если контраст больше нек-рого порогового значения, то предмет виден; если меньше, то предмет теряется на общем фоне. Дальность видимости предмета зависит от прозрачности воздуха и от освещённости (в сумерки и днём порог различения неодинаков). Видимость (прозрачность атмосферы) входит в число основных метеорологич. элементов, наблюдения над к-рыми ведут метеорологич. станции. Исследование условий, влияющих на горизонтальную и наклонную видимость (на фоне неба илиЗемли) - важная прикладная задача А. о. В её решении значит. результаты получили сов. учёные В. В. Шаронов, Н. Г. Болдырев, В. А. Берёзкин, В. А. Фаас, нем. учёный X. Кошмидер, канад. учёный Д. Мидлтон.

Большое значение имеет изучение условий распространения в атмосфере невидимых инфракрасных волн длиной 3- 50 мкм, к-рые обусловливают лучистую передачу тепла (механизм её состоит в поглощении и последующем переизлучении). Очень важны прямые измерения в свободной атмосфере, к-рые могут быть выполнены с самолётов или с искусств. спутников Земли (ИСЗ). В исследовании лучистой теплопередачи существенные результаты были получены советскими учёными А. И. Лебединским, В. Г. Кастровым, К. Я. Кондратьевым, Б. С. Непорентом, Е. М. Фейгельсоном и американскими - Д. Хоуардом и Р. Гуди.

При постановке обратных задач А. о. возникают две трудности: во-первых, нужно установить, что в оптич. информации содержатся нужные данные, и, во-вторых, - указать способ их извлечения и необходимую точность измерений. В. Г. Фесенков ещё в 1923 показал, что по изменению яркости сумеречного неба можно судить о строении атмосферы на высотах более 30 км. Через 30 лет сведения о строении стратосферы и ионосферы, полученные непосредственно с помощью ракет, подтвердили данные сумеречного метода. В развитие сумеречного метода внесли значительный вклад сов. учёные Г. В. Розенберг, Н. М. Штауде. Удалось разработать неск. методов, позволяющих исследовать строение мутных сред по особенностям их светорассеяния, которые нашли применение не только в геофизике. Наибольший интерес вызывает разработка методов зондирования атмосферы с ИСЗ для определения темп-ры земной поверхности или облаков по инфракрасному излучению, приходящему на спутник. Исследуется также способ определения вертикальных профилей темп-ры и влажности по характеру приходящего излучения. В разработке этого метода важные результаты получены сов. учёным М. С. Малкевичем, американским - Л. Капланом и японским - Г. Ямамото.

Работу по развитию и согласованию исследований в области А. о. проводит Академия наук СССР совместно с Главным управлением гидрометеорологической службы СССР.

Лит.: Броунов П.И., Атмосферная оптика, М., 1924; Ш и ф р и н К.С., Рассеяние света в мутной среде, М.- Л., 1951; Пясковская-Фесенкова Е.В., Исследование рассеяния света в земной атмосфере, М., 1957; Розенберг Г. В., Сумерки, М., 1963; Кондратьев К. Я., Актинометрия, Л., 1965. К. С. Шифрин.

АТМОСФЕРНОЕ ДАВЛЕНИЕ, гидростатическое давление, оказываемое атмосферой на все находящиеся в ней предметы. А. д.- существенная характеристика состояния атмосферы; в каждой точке атмосферы оно определяется весом вышележащего воздуха. С высотой А. д. убывает; зависимость А. д. от высоты выражается барометрической формулой. Измеряется А. д. барометром. А. д. выражают в миллибарах (мбар), в ньютонах на м2 (и/м2) или высотой столба ртути в барометре в мм, приведённой к 0°С и норм, (на уровне моря и широте 45°) величине ускорения силы тяжести.

За норм. А. д. принимают 760 мм рт. ст. = 1013,25 мбар = 101325 н/м2. На высоте 5 км А. д. равно прибл. половине А. д. у земной поверхности.

На земной поверхности А. д. изменяется от места к месту и во времени. Особенно важны непериодич. изменения А. д., связанные с возникновением, развитием и разрушением медленно движущихся областей высокого давления - антициклонов и относительно быстро перемещающихся огромных вихрей - циклонов, в к-рых господствует пониженное давление. Отмеченные до сих пор крайние значения А. д. (на уровне моря): 808,7 и 684,0 мм рт. ст. Однако, несмотря на большую изменчивость, распределение средних месячных значений А. д. на поверхности земного шара каждый год примерно одно и то же. Среднегодовое А. д. понижено у экватора и имеет минимум под 10° с. ш. Далее А. д. повышается и достигает максимума под .30-35° сев. и юж. широты; затем А. д. снова понижается, достигая минимума под 60 - 65°, а к полюсам опять повышается. На это широтное распределение А. д. существенное влияние оказывает время года и характер распределения материков и океанов. Над холодными материками зимой возникают области высокого А. д. Таким образом, широтное распределение А. д. нарушается, и поле давления распадается на ряд областей высокого и низкого давлений, к-рые наз. центрами действия атмосферы. С высотой горизонтальное распределение давления становится более простым, приближаясь к широтному. Начиная с высоты ок. 5 км А. д. на всём земном шаре понижается от экватора к полюсам.

В суточном ходе А. д. обнаруживаются 2 максимума: в 9-10 ч и 21-22 ч, и 2 минимума: в 3-4 ч и 15-16 ч. Особенно правильный суточный ход оно имеет в тропич. странах, где дневное колебание достигает 2,4 мм рт. ст., а ночное-1,6 мм рт. ст. С увеличением широты амплитуда изменения А. д. уменьшается, но вместе с тем становятся более сильными непериодич. изменения А. д.

Лит.: X р г и а н А. X., Физика атмосферы, 2 изд., М., 1958, гл. V; Б у р г е с с Э., К границам пространства, пер. с англ., М., 1957.

АТМОСФЕРНОЕ ЭЛЕКТРИЧЕСТВО,1) совокупность электрич. явлений и процессов в атмосфере; 2) раздел физики атмосферы, изучающий электрические явления в атмосфере и её электрич. свойства. При исследовании А. э. изучают электрич. поле в атмосфере, её ионизацию и проводимость, электрич. токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и мн. др. Все проявления А. э. тесно связаны между собой и на их развитие сильно влияют метеорологич. факторы - облака, осадки, метели и т. п. К области А. э. обычно относят процессы, происходящие в тропосфере и стратосфере.

Начало А. э. как науке было положено в 18 в. амер. учёным Б. Франклином, экспериментально установившим электрич. природу молнии, и рус. учёным М. В. Ломоносовым - автором первой гипотезы, объясняющей электризацию грозовых облаков. В 20 ь. были открыты проводящие слои атмосферы, лежащие на высоте более 60-100 км (ионосфера, магнитосфера Земли); установлена электрическая природа полярных сияний и обнаружен ряд др. явлений, изучению к-рых посвящены соответствующие науки, выделившиеся из А. э. Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами. Две основные совр. теории А. э. были созданы англ. учёным Ч. Вильсоном и сов. учёным Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрич. поле атмосферы объясняется всецело электрич. явлениями, происходящими в тропосфере,- поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрич. процессов.

А. э. данного района зависит от глобальных и локальных факторов. Районы, где отсутствуют скопления аэрозолей и источники сильной ионизации, рассматриваются как зоны "хорошей", или "ненарушенной" погоды, здесь преобладают глобальные факторы. В зонах "нарушенной" погоды (в районах гроз, пыльных бурь, осадков и др.) преобладают локальные факторы.

Э л е к т р и ч е с к о е   п о л е        а т м о с ф е р ы. В тропосфере все облака и осадки, туманы, пыль обычно электрически заряжены; даже в чистой атмосфере постоянно существует электрич. поле. Исследования в зонах "хорошей" погоды, начатые в 19 в., показали, что у земной поверхности существует стационарное электрич. поле с напряжённостью Е, в среднем равной ок. 130 в/м. Земля при этом имеет отрицат. заряд, равный ок. 3-105 к.аатмосфера в целом заряжена положительно. Однако при осадках и особенно грозах, метелях, пылевых бурях и т. п. напряжённость поля может резко менять направление и величину, достигая иногда 1000 в/м. Наибольшие значения Е имеет в средних широтах, а к полюсам и экватору убывает. В зонах "хорошей" погоды Е с высотой в целом уменьшается, напр. над океанами. Вблизи земной поверхности, в т. н. слое перемешивания толщиной 300-3000 м, где скапливаются аэрозоли, Е может с высотой возрастать (рис. 1). Выше слоя перемешивания Е убывает с высотой по экспоненциальному закону и па высоте 10 км не превышает неск. е/м. Это убывание Е связано с тем, что в атмосфере содержатся положит. объёмные заряды, плотность к-рых также быстро убывает с высотой.

Рис. 1. Изменение напряжённости электрич. поля Е с высотой Н. 1 - Ленинград; 2 - Киев; 3 - Ташкент.

Разность потенциалов между Землёй и ионосферой составляет 200-2.50 кв. Напряжённость электрич. поля Е меняется во времени. Наряду с локальными суточными и годовыми вариациями Е отмечаются синхронные для всех пунктов суточные (см. кривые / и 2, рис. 2) и годовые вариации Е - т. н. унитарные вариации. Унитарные вариации связаны с изменением электрич. заряда Земли в целом, локальные-с изменениями величины и распределения по высоте объёмных электрич. зарядов в атмосфере в данном районе.

Рис. 2. Суточный ход унитарной вариации напряжённости электрич. поля Е: 1 - над океанами; 2 - в полярных областях; 3 - изменение площади S, занятой грозами, в течение суток.

Электрич. проводимость атмосферы. Электрич. состояние атмосферы в значит. степени определяется её электрич. проводимостью X, к-рая создаётся ионами, находящимися в атмосфере. Наличие ионов в атмосфере и является причиной потери заряда изолированным заряженным телом при соприкосновении с воздухом (явление, открытое в конце 18 в. французским физиком Ш. Кулоном). Электрическая проводимость X зависит от количества ионов, содержащихся в единице объёма (их концентрации), и их подвижности. Основной вклад в X вносят лёгкие ионы, обладающие наибольшей подвижностью и>10- 5м2-сек-1-1 .

Электрическая проводимость атмосферы очень мала и может сравниться с проводимостью хороших изоляторов. У земной поверхности в среднем Х = = (1-2)-10-18 ом-1-.м-1 и увеличивается с высотой примерно по экспоненциальному закону; на высоте ок. 30 км X достигает значений, почти в 150 раз больших, чем у земной поверхности. Выше проводимость увеличивается ещё более, причём особенно резко с высот, до к-рых проникают ионизующие излучения Солнца и где начинается образование ионосферы, проводимость к-рой прибл. в 1012 раз больше, чем в атмосфере вблизи земной поверхности.

Осн. ионизаторы атмосферы: 1) кос-мич. лучи, действующие во всей толще атмосферы; 2) излучение радиоактивных веществ, находящихся в Земле и воздухе; 3) ультрафиолетовое и корпускулярное излучения Солнца, ионизующее действие к-рых заметно проявляется на высотах более 50-60 км. Концентрация лёгких ионов возрастает с увеличением интенсивности ионизации и уменьшением концентрации частиц в атмосфере, поэтому концентрация лёгких ионов растёт с высотой. Этот факт в сочетании с увеличением подвижности ионов при уменьшении плот ности воздуха объясняет характер изменения X и Я с изменением высоты.

Э л е к т р и ч е с к и й          т о к         в           а тм о с ф е р е. Движение ионов под действием сил электрического поля создаёт в атмосфере вертикальный ток проводимости in=ex., со средней плотностью, равной ок. (2-3)-10-12 а/м2. Т. о., в зонах "хорошей" погоды сила тока на всю поверхность Земли составляет ок. 1800 а. Время, в течение к-рого заряд Земли за счёт токов проводимости атмосферы уменьшился бы до 4/е~0,37 от своего первоначального значения, равно ~ 500 сек. Т. к. заряд Земли в среднем не меняется, то очевидно, что существуют "генераторы" А. э., заряжающие Землю. Помимо токов проводимости, в атмосфере текут значит. электрич. диффузионные и кон-вективные токи.

"Г е н е р а т о р ы"          а т м о с ф е рн о г о              э л е к т р и ч е с т в а. "Генераторами" А. э. в зонах нарушенной погоды являются пылевые бури и извержения вулканов, метели и разбрызгивание воды прибоем и водопадами, облака и осадки, пар и дым пром. источников и т. д. При почти всех перечисленных явлениях электризация может проявляться весьма бурно: извержение вулканов, песчаные бури и даже метели приводят иногда к образованию молний; всё же наибольший вклад в электризацию атмосферы вносят облака и осадки.

По мере укрупнения частиц облака, увеличения его толщины, усиления осадков из него растёт его электризация. Так, в слоистых и слоисто-кучевых облаках плотность объёмных зарядов p=3-10-12 к/км3, что прибл. в 10 раз превышает их плотность в чистой атмосфере, а в грозовых облаках р доходит до 3-10-8 к/м3. Облака могут быть заряжены положительно в верхней части и отрицательно в нижней, но могут иметь и противоположную полярность, а также преимущественный заряд одного знака. Плотность тока осадков на Землю из слоисто-дождевых облаков гос~ 10-12 а/м2, в то время как из грозовых гос= 10-9а/м2. Полная сила тока, текущего на Землю от одного грозового облака, в средних широтах равна ок. -(0,01-0,1) а, а ближе к экватору до -(0,5-1,0) а. Сила токов, текущих в самих этих облаках, в 10 - 100 раз больше силы токов, притекающих к Земле. Т. о., гроза в электрич. отношении подобна короткозамкнутому генератору.

При высоких значениях электрич. поля у земной поверхности порядка 500 - 1000 в/м начинается электрич. разряд с острых вытянутых предметов (травы, деревьев, мачт, труб и т. д.), к-рый иногда становится видимым (т. н. огни св. Эльма, особенно яркие в горах и на море, см. Эльма огни). Возникающие при метелях, ливнях и особенно грозах токи коронирования способствуют обмену зарядами между Землёй и атмосферой. Т. о., электрич. поле Земли и ток Земля - атмосфера в зонах хорошей погоды поддерживаются процессами в зонах нарушенной погоды. На земном шаре одновременно существует ок. 1800 гроз (см. кривую 3, рис. 2); суммарная сила тока от них, заряжающего Землю отрицат. зарядом, доходит до 1000 а. Облака слоистых форм, хотя и менее активные, чем грозовые, но зато покрывающие ок. половины земной поверхности, также вносят существенный вклад в поддержание эдектрич. поля Земли. Исследования А. э. позволяют выяснять природу процессов, ведущих к колоссальной электризации грозовых облаков, в целях прогноза и управления ими; выяснить роль электрич. сил в образовании облаков и осадков; они дадут возможность снижения электризации самолётов и увеличения безопасности полётов, а также раскрытия тайны образования шаровой молнии.

Лит.: Френкель Я.И., Теория явлений атмосферного электричества, Л.-М., 1949; Тверской П.Н., Атмосферное электричество, Л., 1949; Имянитов И.М., Приборы и методы для изучения электричества атмосферы, М., 1957; Имянитов И. М. и Ш и ф р и н К. С., Современное состояние исследований атмосферного электричества, "Успехи физических наук", 1962, т. 76, в. 4, с. 593; Имянитов И. М. и Чубарина Е. В., Электричество свободной атмосферы, Л., 19135. И. М. Имянитов.

АТМОСФЕРНЫЕ ПОМЕХИ РАДИОПРИЁМУ, помехи радиоприёму от электрич. процессов, непрерывно происходящих в атмосфере Земли. Каждое нерегулярное изменение (разряд и др.) атм. электричества вызывает излучение электромагнитных волн всевозможной длины, действие к-рых на антенну радиоприёмника проявляется на его выходе в виде шумов и тресков (громкоговоритель), штрихов или чёрточек (кинескоп) и др. Уровень принятых антенной А. п. р. зависит от расстояния и условий распространения радиоволн (в данное время дня и года) между источником их возникновения и местом приёма. Наиболее мешают А. п. р. на длинных и средних волнах радиовещат. диапазона; с переходом на короткие волны помехи резко ослабевают. Особенно сильные А. п. р. создают грозовые разряды. В СССР наиболее сильный грозовой очаг расположен на Ю.-В. страны. Для ослабления действия А. п. р. применяют направл. антенны, когда направление на принимаемую радиостанцию отлично от направления на источник помех, и спец. схемы радиоприёмников.

АТМОСФЕРНЫЙ ВОЛНОВОД, слой воздуха, непосредственно примыкающий к поверхности Земли или приподнятый над ней, к-рый отклоняет распространяющиеся в нём радиоволны к поверхности Земли. При определённых метеорологич.

Атмосферный волновод, в котором радиоволны могут распространяться на большие расстояния вдоль поверхности Земли.

условиях, когда темп-pa убывает с высотой медленнее, а влажность воздуха быстрее, чем при нормальных условиях, волна, вышедшая под небольшим углом к горизонту, на нек-рой высоте испытывает полное отражение, отклоняется обратно к земной поверхности и отражается от неё. Этот процесс может повторяться многократно, в результате чего радиоволны распространяются вдоль поверхности Земли на большие расстояния без заметного ослабления (рис.). Такой способ распространения радиоволн в атмосфере наз. волноводным, он напоминает распространение радиоволн в радиоволноводах. В А. в. могут распространяться волны, для к-рых длина волны X меньше нек-рого критич. значения Хкр (обычно Хкр <50- 100 м), т. е. дециметровые, сантиметровые и более короткие волны (подробнее см. Распространение радиоволн). М. Б. Виноградова.

АТМОСФЕРОСТОЙКОСТЬ ПОЛИМЕРНЫХ МАТЕРИАЛОВ, способность полимерных материалов выдерживать действие различных атмосферных агентов (солнечной радиации, тепла, кислорода воздуха, влаги, пром. газов и т. д.) без значительного изменения внешнего вида и эксплуатац. свойств (механич., диэлектрических и др.). Устойчивость различных видов полимерных материалов к действию отдельных атм. агентов неодинакова. Так, волокна и плёнки наиболее чувствительны к воздействию солнечной радиации, непрозрачные пластмассы - к действию тепла, резины - озона. Критерием А. п. м. служит измене-fine к.-л. эксплуатац. свойства материала за определённое время экспозиции или время экспозиции, за к-рое происходит определённое изменение этих характеристик (напр., время до появления трещин, время до разрыва и т. д.). Выбор характеристики, по к-рой судят об А. п. м., определяется типом материала. Так, атмосферостойкость лакокрасочных покрытий оценивается по изменению их внешнего вида (блеска, цвета, степени растрескивания и др.) и защитных свойств.

А. п. м. во многом определяется интенсивностью воздействия атм. агентов и, следовательно, зависит от климата местности. Поэтому при оценке А. п. м. всегда учитывают климатическую зону, в которой проводилось испытание. Часто А. п. м. определяют не в естественных, а в лабораторных условиях ускоренными методами. Для этой цели пользуются различными приборами, напр. в е з е р о м е т р а м и, к-рые воспроизводят одновременно действие различных атмосферных агентов. А. п. м. сильно зависит от хим. и физ. структуры полимера и от характера введённых в него ингредиентов. Примеры полимерных материалов с хорошей атмосферостойкостью - крем-нийорганические каучуки, полиакрило-нитрильные волокна, пластмассы на основе полиамидов, полиметилметакри-лата, ацетилцеллюлозы и др. А. п. м. повышают различными стабилизаторами полимерных материалов.

АТМОСФЕРЫ ЗВЁЗД, внешний слой звёзд, в котором происходит образование спектра их излучения. Различают собственно атмосферу - слой, в к-ром возникает линейчатый спектр, и более глубокую фотосферу, дающую непрерывный спектр; однако резкой границы между ними нет. Под фотосферой, свечение к-рой определяет блеск звезды, находятся недоступные наблюдениям глубинные слои звезды, содержащие источники энергии. Через фотосферу энергия переносится в основном лучеиспусканием. Для звёзд с постоянным блеском излучение каждого элементарного объёма фотосферы происходит за счёт поглощаемой им лучистой энергии (лучистое равновесие). Построение моделей А. з. (вычисление распределения плотности, давления, темп-ры и др. физ. характеристик атмосферы по глубине) позволяет теоретически рассчитать распределение энергии в непрерывном и линейчатом спектре звезды. Сравнение тео-ретич. и наблюдаемого спектров для звёзд различных классов является критерием правильности положенных в основу теории предположений. Осн. сведения о звёздах (хим. состав, движения в атмосфере, вращение, магнитные поля) получены на основе изучения их спектров.

Один из важнейших параметров теории А. з.- коэффициент поглощения звёздного вещества, т. к. он определяет гео-метрич. глубину фотосферы. Для горячих звёзд осн. роль играет поглощение лучистой энергии атомами водорода (для очень горячих добавляется поглощение гелием и рассеяние свободными электронами), в атмосферах холодных звёзд - отрицательными ионами водорода. Хим. состав внешних слоев А. з. определяют сравнением наблюдённой и теоретической (полученной методом кривой роста или из модели А. з.) эквивалентной ширины линий поглощения (т. е. ширины соседнего с линией участка непрерывного спектра, энергия к-рого равна энергии, поглощённой в линии). Наиболее распространённые элементы - водород и гелий; за ними - углерод, азот, кислород. Число атомов всех металлов составляет примерно одну десятитысячную числа атомов водорода. К 60-м гг. 20 в. подробно рассчитаны звёздные модели всех спектральных классов, к-рые в общем хорошо объясняют их наблюдаемые спектры. В общих чертах хим. состав А., з. одинаков, однако наблюдаются существенные отклонения, связанные как с особым состоянием атмосфер (магнитные звёзды, тесные двойные звёзды), так и с реальными различиями в хим. составе (красные звёзды-гиганты, металлич. "гелиевые", "бариевые" и "литиевые" звёзды и др.), вероятно, вызванными эволюционными процессами. Такие звёзды и звёздные группы изучают особенно интенсивно.

Лит.: Мустель Э. Р., Звездные атмосферы, М., 1960; Аллер Л., Распространенность химических элементов [во вселенной], пер. с англ., М., 1963; Звездные атмосферы, пер. с англ., М., 1963; Теория звездных спектров, М., 1966; С о б о л е в В. В., Курс теоретической астрофизики, М., 1967.

А. Г. Масевич.

АТМОСФЕРЫ ПЛАНЕТ, внешние газовые оболочки планет. Атмосферами обладают все большие планеты Солнечной системы, за исключением, может быть, Меркурия и Плутона. Атмосфера обнаружена также у спутника Сатурна - Титана; возможно, она существует также у спутников Юпитера: Ио, Европы и Га-нимеда. См. Планеты, а также статьи об отдельных планетах.

Лит.: Мороз В.И., Физика планет, М., 1967; Брандт Дж., Ходж П., Астрофизика солнечной системы, пер. с англ., М., 1967.

АТМОФИЛЬНЫЕ ЭЛЕМЕНТЫ, типичные для атмосферы Земли химич. элементы. По геохимической классификации элементов к А. э. относятся: водород, азот и инертные газы (гелий, неон, аргон, криптон, ксенон и радон). Кислород, слагающий 47% литосферы, принадлежит к литофилъным элементам.

АТОЛЛ (от мальдивск. атолу), коралловый остров, имеющий форму сплошного или разорванного кольца, окружающего лагуну небольшой глубины (до 100 м). Образован гл. обр. известковыми постройками колониальных кораллов. А. обычно невелики, но иногда достигают 50 км и более в диаметре. Встречаются в открытом море в тропич. широтах; особенно часто в центр. части Тихого ок., иногда целыми архипелагами. Происхождение А., по гипотезе Ч. Дарвина, объясняется медленным погружением острова, первоначально окружённого барьерным рифом, к-рый постепенно надстраивается кораллами.

АТОМ (от греч. atomos - неделимый), частица вещества микроскопич. размеров и очень малой массы (м и к р о ч а с т и ц а), наименьшая часть хим. элемента, являющаяся носителем его свойств. Каждому элементу соответствует определённый род А., обозначаемых символом элемента (напр., А. водорода Н; А. железа Fe; А. ртути Hg; А. урана U).

А. могут существовать как в с в о б о дн о м состоянии, в газе, так ив связанном. Соединяясь химически с А. того же элемента или А. др. элементов, они образуют более сложные микрочастицы - молекулы; всё огромное многообразие хим. соединений обусловлено различными сочетаниями А. в молекулах. Связываясь друг с другом непосредственно или в составе молекул, А. образуют жидкости и твёрдые тела.

Свойства макроскопич. тел - газообразных, жидких и твёрдых - и свойства отдельных молекул зависят от свойств входящих в их состав А. Все свойства А., физические и химические, определяются его строением как системы, состоящей из ядра и электронов, и подчиняются характерным для микроскопич. явлений к в а н т о в ы м з а к о н а м. Ниже излагаются совр. представления о строении и свойствах А. (историй развития учения об А. см. в ст. Атомная физика).

Общая характеристика строения атома. А. состоит из тяжёлого ядра, обладающего положительным электрич. зарядом, и окружающих его лёгких электронов с отрицательными электрич. зарядами, образующих электронные оболочки А. Размеры А. в целом определяются размерами его электронной оболочки и велики по сравнению с размерами ядра А. Характерные порядки размеров:
 
 
 
 
 
Линейные размеры
Площадь*
Объём
Атом
10-8 см
10-16 см2
10-24 см3
Ядро
10-1,2 см
10-21 см2
10-36 см3
Отношение
104
108
1012
* Поперечное сечение.

Электронные оболочки А. не имеют строго определённой границы; значения размеров А. в большей или меньшей степени зависят от способов их определения и весьма разнообразны (см. Атомные радиусы).

Заряд ядра - осн. характеристика А., обусловливающая его принадлежность определённому элементу. Заряд ядра всегда является целым кратным элементарного положительного электрич. заряда е, равного по абс. значению заряду электрона -е. Заряд ядра равен + Ze, где Z - порядковый номер (атомный номер). 2 = 1, 2, 3, 4,... для А. последовательных элементов в периодической системе элементов Менделеева, т. е. для атомов Н, Не, Li, Be, ... В не й-тральном А. ядро с зарядом +Ze удерживает Z электронов с общим зарядом -Ze и полный заряд А. равен нулю; в положительном ионе - А., потерявшем k электронов (ионизованном А.), остаётся Z-k электронов (k =1,2, 3, ...-кратность ионизации) и его заряд равен +ke; в отрицательном ионе - А., присоединившем k электронов,- содержится Z + k электронов, и его заряд равен -ke. Для положит. иона макс. значение k=Z (такой ион потерял все свои электроны и состоит из "голого" ядра); для отрицательного свободного иона fe = l; для связанных А. возможно образование отрицат. ионов с k>l (в растворах, комплексных соединениях и ионных кристаллах). Говоря об А. определённого элемента, подразумевают как нейтральные А., так и ионы этого элемента. Но иногда под А. понимают нейтральный А., в противоположность ионам. Положительные и отрицат. ионы при написании отличают от нейтрального А. индексом k+ и k-, напр. О обозначает нейтральный А. кислорода (Z=8), O+, О2+(или О++), О3+,..., О8+- его положит, ионы, О- , О2- (или О- ) - его отрицат. ионы. Совокупность нейтрального А. и ионов др. элементов с тем же числом электронов образует изоэлектронный ряд. Простейший такой ряд начинается с А. водорода: H,He+,Li2+, Be3+,...; члены этого ряда состоят из ядра и одного электрона.

Порядок значений зарядов ядер различных А. был определён англ. физиком Э. Резерфордом в его первонач. опытах по рассеянию альфа-частиц (1911). Значения Z были надёжно установлены англ, физиком Г. Мозли (1913-14) на основе изучения рентгеновских спектров последовательных элементов в периодич. системе. Кратность заряда ядра А. элементарному заряду е получила объяснение, исходя из представлений о строении ядра: Z равно числу протонов в ядре, протон имеет заряд +е, и полный заряд ядра равен сумме зарядов всех Z протонов, т. е. +Ze.

Масса атома возрастает с увеличением Z. Масса ядра А. приближённо пропорциональна массовому числу А -общему числу протонов и нейтронов в ядре. Масса электрона (0,91 • 10-27 г) значительно меньше (примерно в 1840 раз) массы . протона или нейтрона (1,67-10-24 г), и поэтому масса А. в целом определяется в основном массой его ядра.

А. данного элемента могут отличаться массой ядра (число протонов Z постоянно, число нейтронов А-Z может меняться); такие разновидности А. одного и того же элемента наз. изотопами. Различие массы ядра почти не сказывается на строении их электронных оболочек, зависящем от заряда ядра Z. Химические и большинство физ. свойств (оптич., электрические, магнитные), определяемые строением электронных оболочек, одинаковы или очень близки для всех изотопов данного элемента. Наибольшие отличия в свойствах (и з о т о п и ч е с к и е э ф ф е к т ы) получаются для изотопов водорода (Z = l) из-за большой разницы в массах обычного лёгкого А. водорода (А=1), А. дейтерия (А =2) и А. трития (А=3).

Масса А. приближённо равна массовому числу А и изменяется от 1,67-10-24г для самого лёгкого А. водорода (основного изотопа: Z = 1,A = 1) до примерно 4-10-22г для самых тяжёлых А. трансурановых элементов (Z = 100, А=250).

Наиболее точные значения масс А. могут быть определены методами масс-спектроскопии. Масса А. не равна в точности сумме массы ядра и масс электронов, а несколько меньше - на дефект массы AM = W/c2, где W - энергия образования А. из ядра и электронов, а с - скорость света. Эта поправка - порядка массы одного электрона тe для тяжёлых А., а для лёгких А. пренебрежимо мала (порядка 10-4 массы электрона).

Э н е р г и я         а т о м а            и           е ё           к в а н т о в а н и е. Благодаря малым размерам и большой массе ядра его можно приближённо считать точечным и покоящимся в центре масс А. (общий центр масс ядра и электронов находится вблизи ядра, а скорость движения ядра относительно центра масс А. мала по сравнению со скоростями движения электронов). Соответственно А. можно рассматривать как систему, в к-рой N электронов с зарядами -е движутся вокруг неподвижного притягивающего центра. Движение электронов в А. происходит в ограниченном объёме - оно является связанным. Полная внутренняя энергия А. Е равна сумме кинетич. энергий всех электронов Т и потенциальной энергии U - энергии притяжения их ядром и отталкивания их друг от друга (э л е к т ро с т а т и ч е с к о й э н е р г и и взаимодействия электрич. зарядов ядра и электронов, согласно закону Кулона).

В простейшем случае А. водорода один электрон с зарядом -е движется вокруг неподвижного центра с зарядом +е. В этом случае, согласно классич. механике, кинетич. энергия

Т = 1 /2 mv2 = р2/2т, (1) где т - масса, v - скорость, p=mv - количество движения (импульс) электрона. Потенциальная энергия (сводящаяся к энергии притяжения электрона ядром) U = U(r)=-e2/r (2) и зависит только от расстояния r электрона от ядра. Графически функция U(r) изображается кривой (рис. 1, я), неограниченно убывающей при уменьшении r, т. е. при приближении электрона к ядру. Значение U (r) на бесконечности принято за нуль. При отрицат. значениях полной энергии E=Т+U<0 движение электрона является связанным: оно ограничено в пространстве значениями r = rmax,при к-рых Т=0, Е = и(rтax). При положит. значениях полной энергии Е=T+U>0 движение электрона является свободным - он может уйти на бесконечность с энергией E=T = 1/2 mv2, что соответствует ионизованному А. водорода Н+. Нейтральный А. водорода Н представляет, т. о., систему, состоящую из ядра и электрона в связанном состоянии с энергией Е<0.

Полная внутренняя энергия А. Е является его основной характеристикой как квантовой системы - системы, подчиняющейся квантовым законам (см. Квантовая механика). Как показывает огромный экспериментальный материал (см., напр., франка - Герца опыт), А. может длительно находиться лишь в состояниях с определённой энергией - стационарных (неизменных во времени) состояниях.

Существование стационарных состояний - один из основных законов физики микроскопич. явлений - квантовой физики. Внутренняя энергия к в а н-

товой системы, состоящей из связанных микрочастиц (такой системой и является А.), может принимать одно из дискретного (прерывного) ряда значений

Каждому из этих "дозволенных" значений энергии соответствует одно или несколько стационарных квантовых состояний движения. Промежуточными значениями энергии (напр., лежащими между E1 и E2, E2 и Ез и т. д.) система обладать не может, о такой системе говорят, что её энергия квантована, а нахождение возможных значений энергии наз. квантованием энергии. Любое изменение энергии Е связано с квантовым (скачкообразным) п е-р е х о д о м системы из одного стационарного квантового состояния в другое (см. ниже).

Графически возможные дискретные значения энергии (3) А. можно изобразить, по аналогии с потенциальной энергией тела, поднятого на различные высоты (на различные уровни), в виде схемы уровней энергии, где каждому значению энергии соответствует прямая, проведённая на высоте Ei (i = 1, 2, 3, ...); такая схема приведена на рис. 1, б для А. водорода (на рис. 1, а при E<0 оказываются, т. о., возможными лишь определённые ступеньки, соединённые горизонтальным пунктиром с уровнями схемы на рис. 1, б). Самый нижний уровень Ei, соответствующий наименьшей возможной энергии системы, наз. основным, а все остальные (Ei>Ei, i=2,3,4,...)- возбуждёнными, т. к. для перехода на них (перехода в соответствующие стационарные в о з б у ж д ё н н ы е состояния из стационарного о с н о вн о г о с о с т о я н и я) необходимо возбудить систему - сообщить ей извне энергию Ei-Ei.

Квантование энергии А. является следствием волновых свойств электронов. Нельзя считать, что электрон в А. движется как материальная точка по определённой траектории, согласно законам классич. механики. Эти законы справедливы лишь для частиц большой массы (макрочастиц), а для электрона, как микрочастицы, необходимо учитывать,наряду с его корпускулярными свойствами (свойствами частицы), и его волновые свойства. Согласно квантовой механике, движению микрочастицы массы т со скоростью v соответствует длина волны L=h/mv, где h - Планка постоянная. Для электрона в А. L~ 10-8 см, т. е. порядка линейных размеров А., и учёт волновых свойств электрона в А. является необходимым. Связанное движение электрона в А. схоже со стоячей волной, и его следует рассматривать не как движение материальной точки по траектории, а как сложный колебат. процесс. Для стоячей волны в ограниченном объёме возможны лишь определённые значения длины волны L, (и, следовательно, частоты колебаний V). Так как, согласно квантовой механике, v = E/h, отсюда следует, что система, состоящая, подобно А., из связанных микрочастиц, может иметь лишь определённые значения энергии, т. е. энергия квантуется и получается дискретная последовательность уровней энергии - д и с к р е т н ы й э н е р г ет и ч е с к и й с п е к т р. Для А. водорода такая дискретная последовательность получается при Е<0 (см. рис. 1). Свободное, т. е. не ограниченное в пространстве, поступательное движение микрочастицы, напр. двилсение электрона, оторванного от А. (в случае А. водорода - электрона с энергией E>0), сходно с распространением бегущей волны в неограниченном объёме, для к-рой возможны любые значения L (и v). Энергия такой свободной микрочастицы может принимать любые значения, т. е. не квантуется, и получается непрерывная последовательность уровней энергии - непрерывный энергетический спектр. Для А. водорода такая непрерывная последовательность, соответствующая ионизованному А., получается при E>0. Значение Eоо =0 соответствует границе ионизации, а разность Еоо-E1=Eион представляет энергию ионизации: для А. водорода она равна 13,6 эв.

Р а с п р е д е л е н и е э л е к тр о н н о й п л о т н о с т и. Состояние электрона в А. можно характеризовать распределением в пространстве его электрич. заряда с нек-рой плотностью - распределением электронной плотности. При этом электроны рассматриваются наглядным образом, как "размазанные" в пространстве и образующие "электронное облако". Такая модель правильнее характеризует электроны в А., чем модель точечного электрона, движущегося, согласно теории Бора (см. Атомная физика), по строго определённым орбитам. Вместе с тем боровским орбитам можно сопоставить определённые распределения электронной плотности. Для основного уровня энергии Ei электронная плотность концентрируется вблизи ядра; для возбуждённых уровней энергии Е23 , Е4 ,... она распределяется на всё больших средних расстояниях от ядра (что соответствует возрастанию размера орбит в теории Бора). В сложном А. эти электроны группируются в оболочки, окружающие ядро на различных расстояниях и характеризующиеся определёнными распределениями электронной плотности. Прочность связи электронов в более внешних оболочках меньше, чем во внутренних, и слабее всего электроны связаны в самой внешней оболочке, обладающей наибольшими размерами, к-рые и определяют размеры А. в целом. При ионизации А. теряет внешние электроны; размеры положит. ионов тем меньше размеров нейтрального А., чем выше кратность иона. Наоборот, размеры отрицат. ионов больше размеров нейтрального А.

Учёт спина электрона и спина ядра. В теории А. весьма существен учёт спина электрона - его собственного (спинового) момента количества движения, с наглядной точки зрения соответствующего вращению электрона вокруг собственной оси (если электрон рассматривать как частицу малых размеров). Со спином электрона связан его магнитный момент. Поэтому в А. необходимо учитывать, наряду с элект-ростатич. взаимодействиями (см. выше), и магнитные взаимодействия, определяемые спиновым магнитным моментом, а также орбитальным магнитным моментом, связанным с движением электрона вокруг ядра; магнитные взаимодействия малы по сравнению с электростатическими. Наиболее существенное влияние спина проявляется в сложных А.: от спина электронов зависит заполнение электронных оболочек А. определённым числом электронов (см. ниже).

Ядро в А. также может обладать собственным механич. моментом - ядерным спином, с к-рым связан небольшой ядерный магнитный момент (в сотни и тысячи раз меньший электронного магнитного момента), а в нек-рых случаях и т. н. квадрупольный электрич. момент (см. Моменты атомных ядер). Это приводит к дополнительным очень малым взаимодействиям ядра и электронов, обусловливающим дополнительное расщепление уровней энергии А.- т. н. сверхтонкую структуру (малую по сравнению с тонкой структурой).

Квантовые состояния атома водорода. Важнейшую роль в квантовой теории А. играет теория простейшего одно-электронного А., состоящего из ядра с зарядом + Ze и электрона с зарядом -е, - теория А. водорода Н и в о д о-родоподобных ионов Не+, Li2+, Ве3+,.._(изоэлектронного ряда, см. выше), наз. обычно теорией А. водорода. Методами квантовой механики можно получить точную и полную характеристику состояний электрона в одноэлектронном А. Задача о сложных (м н о г о э л е к тр о н н ы х) атомах решается лишь приближённо; при этом чсходят из результатов решения задачи об одноэлектронном А.

Уровни энергии А. водорода и водородоподобных ионов. Энергия одноэлектронного А. (без учёта спина электрона) равна

(4)

целое число n = 1, 2, 3, ... определяет возможные дискретные значения энергии - уровни энергии; его называют главным квантовым числом. R - Ридберга постоянная, равная 13,6 эв. Уровни энергии А. водорода на схеме рис. 1, б построены для Z = l согласно формуле (4); они сгущаются (сходятся) к границе ионизации  соответствующей п = °° (уровни энергии с n>5 на схеме не показаны). Для водородоподобных ионов изменяется (в Z2 раз) лишь масштаб энергий. Энергия ионизации водородоподобного А. (энергия связи электрона в таком А.) равна (в эв)

что даёт для Н, Не+, Li2+,... значения 13,6 эв, 54,4 эв, 122,4 эв, ...

Основная формула (4) соответствует выражению U (r) =-Ze2/r для потенциальной энергии электрона, притягиваемого ядром с зарядом +Ze [см. (2) и рис. 1, а для случая Z = l]. Эта формула была впервые выведена Н. Бором в его теории А. (1913) путём рассмотрения движения электрона вокруг ядра по круговой орбите радиуса r. Уровням энергии (4) соответствуют орбиты радиуса

(6)

где постоянная ао = 0,529- 10- 8см =0,529А - радиус первой круговой орбиты А. водорода, соответствующей его основному уровню (этим боровским радиусом часто пользуются в качестве удобной единицы для измерений длин в атомной физике). Радиус орбит пропорционален квадрату главного квантового числа n2 и обратно пропорционален Z; для водородоподобных ионов масштаб линейных размеров уменьшается в Z раз по сравнению с А. водорода.

Характеристика квантовых состояний атома водорода. Согласно квантовой механике, состояние А. водорода полностью определяется дискретными значениями ч е т ы р ё х физ. величин: энергии E; о р б и т а л ь н о г о м о м е н т а М, (момента количества движения электрона относительно ядра); проекции Мi орбитального момента на направление z (выбранное произвольно в пространстве); проекции Msz спинового момента (собственного момента количества движения электрона Ms). Возможные значения этих физ. величин, в свою очередь, определяются соответствующими квантовыми числами:

1)Е - по закону (4) - главным квантовым числом n = l, 2, 3, ...;

2)М - по закону Мi2 = (h2/4п2) 1(1 + 1)
 
 

[при  , Mi2 = (h2/4п2)/2] - орбитальным (или азимутальным) квантовым числом i=0,1, 2, ..., n-1;

3) Мiz - по закону Мiz = (h/2п)miz - магнитным орбитальным квантовым числом mi = i, i-1, ..., -i;

4) Мsz - по закону Мsz =(h/2)ms - магнитным спиновым квантовым числом

№=1/2; -1/2 .

Значения квантовых чисел n, I, mi, ms и характеризуют состояние электрона в А. водорода. Энергия А. водорода зависит только от n, и уровню энергии с заданным n соответствует ряд состояний, отличающихся значениями l, тi и ms. Состояния с заданными значениями n и I принято обозначать как Is, 2s, 2p, 3s, ..., где цифры указывают значение n, a буквы s, р, d, f (дальше по лат. алфавиту)- соответственно значения l=0, 1, 2, 3, ... При заданных п и I число различных состояний равно 2(2l + 1) - числу комбинаций значений т: и ms (первое принимает 2l + 1 значение, второе - 2 значения). Общее число различных состояний с заданными n и l при учёте, что l может принимать значения от О до n-1, получается равным

(7)

Т. о., каждому уровню энергии А. водорода соответствует 2, 8, 18, ..., 2п2 (при я = 1, 2, 3, ...) различных стационарных квантовых состояний (рис. 2). Если уровню энергии соответствует лишь одно квантовое состояние, то его называют невырожденным, если два или более - вырожденным (см. Вырождение), а число таких состояний g наз. степенью или кратностью вырождения (для невырожденных уровней энергии g = 1). Уровни энергии А. водорода являются вырожденными, а их степень вырождения gп - 2п2.

Для различных состояний А. водорода получается и различное распределение электронной плотности. Оно зависит от квантовых чисел п, l и |mi |. При этом электронная плотность для s-состояний (l=0) отлична от нуля в центре, т. е. в месте нахождения ядра, и не зависит от направления (сферически симметрична), а для остальных состояний (l>0) она равна нулю в центре и зависит от направления. Распределение электронной плотности для состояний А. водорода с n = l, 2 и 3 показано на рис. 3 (оно получено фотографированием спец. моделей); размеры "электронного облака" растут примерно пропорционально n2 (масштаб на рис. 3 уменьшается при переходе от n = l к n=2 и от n=2 к n=3), что соответствует увеличению радиуса орбит по формуле (6) в теории Бора.

Квантовые состояния электрона в водородоподобных ионах характеризуются теми же четырьмя квантовыми числами и, l, тi и ms, что и в А. водорода. Сохраняется и распределение электронной плотности, только она увеличивается в Z раз и на рис. 3 масштабы нужно уменьшить также в Z раз. Соответственно уменьшаются и размеры орбит.
 

Действие внешних полей на  уровни энергии атома водорода Во внешнем электрич. и магнитном полях А. как электрич. система приобретает дополнит. энергию. Электрическое поле поляризует А.- смещает электронное облако относительно ядра, а магнитное поле ориентирует определённым образом магнитный момент А., связанный с движением электрона вокруг ядра (с орбитальным моментом М,) и его спином. Различным состояниям А. водорода с той же энергией En во внешнем поле соответствует различная дополнит. нергия ДE, и вырожденный уровень энергии Еп расщепляется на ряд подуровней (рис. 4).

Рис. 3. Распределение электронов плотности для состояний атома водорода с  n=1,2,3 m=|mi|

Как расщепление в электрич. поле-Штарка явление, так и расщепление в магнитном поле - Зеемана явление, для уровней энергии А. водорода пропорциональны напряжённости полей.
Рис. 4. Расщепление уровня энергии во внешнем магнитном поле.
 
 

К расщеплению уровней энергии приводят и малые магнитные взаимодействия внутри А. Для А. водорода и водородоподобных ионов имеет место спин-орбитальное взаимодействие - взаимодействие спинового и орбитального моментов электрона, не учитываемое при выводе основной формулы (4); оно обусловливает т. н. то н-кую структуру уровней энергии- расщепление возбуждённых уровней Еп (при n>1) на подуровни. Наиболее точные исследования тонкой структуры методами радиоспектроскопии показали наличие т. н. сдвига уровней, объясняемого в квантовой электродинамике.

Для всех уровней энергии А. водорода наблюдается и сверхтонкая

структура, обусловленная очень малыми магнитными взаимодействиями ядерного спина с электронными моментами. Уровень Ei расщепляется на 2 подуровня с расстоянием между ними примерно 5-10- 6эв.

Электронные оболочка сложных атомов. Теория сложных А., содержащих 2 или более электронов, принципиально отличается от теории А. водорода, т. к. в сложном А. имеются в з а и м од е й с т в у ю щ и е друг с другом одинаковые частицы - электроны. Взаимное отталкивание электронов в многоэлектроином А. существенно уменьшает прочность их связи с ядром. Напр., энергия отрыва единственного электрона в ионе гелия (Не+) равна 54,4 эв; в нейтральном же атоме гелия в результате отталкивания электронов энергия отрыва одного из них уменьшается до 24,6 эв. Для внешних электронов более тяжёлых А. уменьшение прочности их связи из-за отталкивания внутренними электронами ещё более значительно. Чрезвычайно важную роль в сложных А. играют свойства электронов как одинаковых микрочастиц (см. Тождественности принцип), обладающих спином s = 1/2, для к-рых справедлив Паули принцип. Согласно этому принципу, в системе электронов не может быть более одного электрона в каждом квантовом состоянии, что для сложного А. приводит к образованию электронных оболочек, заполняющихся строго определёнными числами электронов.

Учитывая неразличимость взаимодействующих между собой электронов, имеет смысл говорить только о квантовых состояниях А. в целом. Однако приближённо можно рассматривать квантовые состояния отдельных электронов и характеризовать каждый из них совокупностью четырёх квантовых чисел п, I, mi и ms, аналогично электрону в А. водорода. При этом энергия электрона оказывается зависящей не только от п, как в А. водорода, но и от l; от mi и ms она по-прежнему не зависит. Электроны с данными п и l в сложном А. имеют одинаковую энергию и образуют определённую э л е к тр о н н у ю о б о л о ч к у; их называют э к в и в а л е н т н ы м и электронами. Такие электроны и образованные ими оболочки обозначают, как и квантовые состояния и уровни энергии с заданными n и /, символами ns, np, nd, nf, ... (для l=0, 1, 2, 3, ...) и говорят о 2р-электро-нах, Ss-оболочках и т. п.

З а п о л н е н и е э л е к т р о н н ы х о б о л о ч е к и с л о е в. В силу принципа Паули любые 2 электрона в А. должны находиться в различных квантовых состояниях и, следовательно, отличаться хотя бы одним из четырёх квантовых чисел n, l, mi и тs . Для эквивалентных электронов (n и l одинаковы) должны быть различны пары значений mi и ms. Число таких пар равно числу различных квантовых состояний электрона с заданными n и l, т. е. степени вырождения его уровня энергии. Это число gi = 2 (2l +1) = =2, 6, 10, 14, ... и определяет число электронов, полностью заполняющих данную оболочку. Т. о., s-, p-, d-, f-, ... оболочки заполняются 2, 6, 10, 14, ... электронами, независимо от значения n. Электроны с данным n образуют слой, состоящий из оболочек с l=0, 1, 2, ..., п-1 и заполняемый 2п2 электронами, т. н. К-, L-, М-, N-, ...слой. При полном заполнении имеем:

Наиболее близко к ядру расположен 1C-слой, затем идёт L-слой, М-слой, N-слой, ... В каждом слое оболочки с меньшими l характеризуются большей электронной плотностью вблизи ядра. Прочность связи электрона уменьшается с увеличением n, а при заданном n - с увеличением l; на рис. 5 схематически показаны (без соблюдения масштаба энергий) уровни энергии отдельного электрона в сложном А.

Рис. 5. Последовательность заполнения уровней энергии отдельного электрона в сложном атоме. Справа даны числа заполнения оболочек.

 Чем слабее связан электрон в соответствующей оболочке, тем выше лежит его уровень энергии. Ядро с заданным Z присоединяет электроны в порядке уменьшения прочности их связи: сначала два электрона Is, затем два электрона 2s, шесть электронов 2р и т. д. в соответствии со схемой рис. 5. Это определяет э л е к т р о н н ы е  к о н ф и г у р а ц и и, т. е. распределения электронов по оболочкам, для ионов и нейтрального А. данного элемента. Напр., для азота (Z = 7) получаются электронные конфигурации (число электронов в данной оболочке указывается индексом справа сверху).

 Такие же электронные конфигурации, как и ионы азота, имеют нейтральные атомы последовательных элементов в пе-риодич. системе, обладающие тем же числом электронов: Н, Не, Li, Be, В, С (z = 1,2,3,4,5,6). Периодичность в свойствах элементов определяется сходством внешних электронных оболочек А. Напр., нейтральные А. Р, As, Sb, Bi (Z = 15, 33, 51, 83) имеют по три р-элект-рона во внешней электронной оболочке подобно А. N и схожи с ним по химическим и многим физ. свойствам.

При рассмотрении заполнения электронных эболочек необходимо учитывать, что, начиная с n=4, электроны с меньшим l, но 5бльшим п, связываются прочнее, чем электроны с большим l, но меньшим n, напр. электроны As связаны прочнее, чем электроны 3d.Это отражает рис. 5, показывающий расположение уровней энергии, соответствующее действительному порядку (несколько схематизированному) заполнения электронных оболочек для последовательных элементов в периодической системе элементов Д. И. Менделеева. Числа, стоящие справа у скобок, определяют числа элементов в периодах этой системы, заканчивающихся атомами инертных газов с внешними оболочками типа np6 (n=2, 3, 4, 5, 6) для Ne, Аг, Кг, Хе, Rn (Z = 10, 18, 36, 54, 86). У р о в н и         э н е р г и и           с л о жн ы х          а т о м о в. Каждый А. характеризуется н о р м а л ь н о й электронной конфигурацией, получающейся, когда все электроны в А. связываются наиболее прочно, и возбуждёнными электронными конфигурациями, когда один или неск. электронов связаны более слабо - находятся на более высоких уровнях энергии. Напр., для А. гелия наряду с нормальной электронной конфигурацией Is2 возможны возбуждённые: 15 2s, Is 2р, ... (возбуждён один электрон), 2s2, 2s2p, ... (возбуждены оба электрона). Определённой электронной конфигурации соответствует один уровень энергии А. в целом, если электронные оболочки целиком заполнены (напр., нормальная конфигурация А. Ne Is2 2s2 In6), и ряд уровней энергии, если имеются частично заполненные оболочки (напр., нормальная конфигурация Л. N Is2 2s2 2p3, для к-рой оболочка 2р заполнена как раз наполовину). При наличии частично заполненных d- и f-оболочек число уровней энергии, соответствующих каждой конфигурации, может достигать многих сотен, так что схема уровней энергии А. с частично заполненными внешними оболочками получается очень сложной. Основным уровнем энергии А. является самый нижний уровень нормальной электронной конфигурации.

Квантовые переходы в атоме. При квантовых переходах А. переходит из одного стационарного состояния в другое - с одного уровня энергии на другой. При переходе с более высокого уровня энергии Ei на более низкий Еk А. отдаёт энергию Ei-En, при обратном переходе получает её. Как для любой квантовой системы, для А. квантовые переходы могут быть двух типов: с излучением (о п т и ч е с к и е       п е р е х о д ы) и без излучения (б е з ы з л у ч а т е л ь н ы е или н е о п т и ч е с к и е переходы). Важнейшая характеристика квантового перехода - вероятность перехода, определяющая, как часто этот переход будет происходить.

К в а н т о в ы е       п е р е х о д ы с излучением. При этих переходах А. поглощает (переход En-Ei) или испускает (переход Ei -> Eh) электромагнитное излучение, напр, видимый свет, ультрафиолетовые лучи, инфракрасные лучи, СВЧ (микроволновое) излучение. Электромагнитная энергия поглощается и испускается А. в виде кванта света -

фотона, характеризуемого определённой частотой колебаний v, согласно соотношению:

(8)

где h - постоянная Планка; hv - энергия фотона. Закон (8) представляет собой закон сохранения энергии для микроско-пич. процессов, связанных с излучением.

А. в основном состоянии может только поглощать фотоны, а А. в возбуждённых состояниях может как поглощать, так и испускать их. Свободный А. в основном состоянии может существовать неограниченно долго; продолжительность пребывания А. в возбуждённом состоянии - время жизни на возбуждённом уровне энергии - ограничена, А. спонтанно, т. е. самопроизвольно, частично или полностью теряет энергию возбуждения, испуская фотон и переходя на более низкий уровень энергии (наряду с таким спонтанным испусканием возможно и вынужденное испускание, происходящее, подобно поглощению, под действием фотонов той же частоты; см. Квантовые переходы). Время жизни возбуждённого А. тем меньше, чем больше вероятность спонтанного перехода. Для возбуждённых А. водорода это время порядка 10-8 сек.

Совокупность частот возможных переходов с излучением определяет оптич. с п е к т р соответствующего А.: совокупность частот переходов с нижних уровней на верхние - его спектр поглощения, совокупность частот переходов с верхних уровней на нижние - его с п е к т р        и с п у с к а н и я. Каждому такому переходу соответствует определённая с п е к т р а л ь н а я л ин и я. Для А. водорода, согласно формулам (4) и (8), получаем совокупность спектральных линий с частотами

о)

При nk = l и ni =2, 3, 4, 5, ... получается спектральная серия Лаймана (линии  ...), при nk = =2 и ni =3, 4, 5, ... - серия Б а л ь м е р а (линии Нa , Нр, Нy ...), при nk = 3 и ni = 4, 5, ...- с е р и я П а ш е-н а (рис. 1, б). Для А. др. элементов в соответствии с более сложной схемой уровней энергии получается и более сложный спектр (см. Атомные спектры). К в а н т о в ы е              п е р е х о д ы            б е з и з л у ч е н и я. При этих переходах А. получает или отдаёт энергию при взаимодействии с другими частицами, с к-рыми он сталкивается в газе или длительно связан в молекуле, жидкости или твёрдом теле. В газе А. можно считать свободным в промежутках времени между столкновениями; во время столкновения (удара) А. может, благодаря кратковременному взаимодействию, перейти на другой уровень энергии. Такое столкновение наз. неупругим (в противоположность упругому столкновению, при к-ром изменяется только кинетич. энергия поступательного движения А., а его внутренняя энергия остаётся неизменной). Важный частный случай - столкновение свободного А. с электроном; обычно электрон движется быстро по сравнению с А., время столкновения очень мало и можно говорить об э л е ктронном ударе. Возбуждение А. электронным ударом является одним из методов определения уровней энергии А. Вероятности неупругих столк-

новений и, в частности, возбуждения А. электронным ударом могут быть рассчитаны методами квантовой механики (см. Столкновения атомные).

Химические и физические свойства атома. Большинство свойств А. определяется строением и характеристиками его внешних электронных оболочек, в к-рых электроны связаны сравнительно слабо (энергии связи от нескольких эв до нескольких десятков эв). Строение внутренних оболочек А., электроны к-рых связаны гораздо прочнее (энергии связи в сотни, тысячи и десятки тысяч эв), проявляется лишь при взаимодействиях А. с быстрыми частицами и фотонами больших энергий (более сотен эв). Такие взаимодействия определяют рентгеновские спектры А. и рассеяние атомом быстрых частиц (см. Рассеяние микрочастиц, Дифракция частиц). От массы А., определяемой массой его ядра, зависят его механич. свойства при движении А. как целого - количество движения, кинетическая энергия. От механических и связанных с ними магнитных и электрич. моментов А. зависят нек-рые тонкие эффекты, проявляющиеся при изучении физ. свойств А. (см. Моменты атомных ядер, Ядерный магнитный резонанс, Ядерный квадруполъныйрезонанс, Сверхтонкая структура).

С в о й с т в а       а т о м а, о п р е д ел я е м ы е        е г о         в н е ш н и м и        э л е к т р о н а м и. Электроны во внешних оболочках А., связанные сравнительно слабо, легко подвергаются внешним воздействиям. При сближении данного А. с другими возникают сильные электростатич. взаимодействия (включая т. н. обменные взаимодействия), к-рые могут приводить к возникновению химической связи А., т. е. к образованию молекулы. В химич. связи участвуют электроны внешних оболочек; в случае ко-валентной связи эти электроны принадлежат уже не отдельным А., а образовавшейся молекуле в целом, и входят в состав её молекулярных электронных оболочек. Т. о., внеш. электроны А. определяют его хим. свойства.

Более слабые электростатич. взаимодействия двух А. проявляются в их взаимной поляризации - смещении электронов относительно ядер, наиболее сильном для слабо связанных внешних электронов (см. Поляризация частиц). Возникают поляризационные силы притяжения между А., к-рые надо учитывать уже на больших расстояниях между ними (см. Межмолекулярное взаимодействие). Поляризация А. происходит и во внешних электрич. полях; в результате уровни энергии А. смещаются и, что особенно важно, вырожденные уровни энергии расщепляются (поляризация различна для различных квантовых состояний А., соответствующих той же его энергии) - имеет место Штарка явление. Поляризация А. может возникнуть под действием электрич. поля световой (электромагнитной) волны; она зависит от частоты света, что обусловливает зависимость от неё и показателя преломления (см. Дисперсия света), связанного со способностью А. поляризоваться - с поляризуемостью А. (см. Поляризуемость атомов, ионов и молекул). Тесная связь оптич. характеристик А. с его электрич. свойствами особенно ярко проявляется в его о п т и ч. с п е к т р а х.

Внешними электронами определяются и магнитные свойства А. Они схожи для элементов с аналогичными внешними электронными оболочками А. Магнитный момент А. зависит от его механич. момента (см. Магнитоме-ханическое отношение): в А. с полностью заполненными электронными оболочками он равен нулю, так же как и механич. момент. При наличии частично заполненных внешних электронных оболочек магнитные моменты А., как правило, постоянны, и А. являются парамагнитными (см. Парамагнетизм). Во внешнем магнитном поле все уровни А., у которых магнитный момент неравен нулю, расщепляются (см. Зеемана явление). Все А. обладают диамагнетизмом, к-рый обусловлен возникновением у них магнитного момента под действием магнитного поля (т. н. и н д у ц и р ов а н н о г о м а г н и т н о г о м ом е н т а, аналогичного электрич. диполь-ному моменту А.).

С в о й с т в а и о н и з о в а н н ог о а т о м а. При последовательной ионизации А., т. е. при отрыве его электронов, начиная с самых внешних, в порядке увеличения прочности их связи (рис. 5), соответственно изменяются все свойства А., определяемые его внешней оболочкой. Внешними становятся все более прочно связанные электроны; в результате сильно уменьшается способность А. поляризоваться в электрич. поле, увеличиваются расстояния между уровнями энергии и частоты оптич. переходов между этими уровнями (что приводит к смещению спектров в сторону всё более коротких длин волн). Ряд свойств обнаруживает периодичность: сходными оказываются свойства ионов с аналогичными внешними электронами, напр. N7+ и N3+ (один и два электрона 2s) обнаруживают сходство с N6+ и N5+ (один и два электрона Is). Это относится к характеристикам и относительному расположению уровней энергии и к оптич. спектрам, к магнитным моментам А. и т. д. Наиболее резкое изменение свойств происходит при удалении последнего электрона из внешней оболочки, когда остаются лишь полностью заполненные оболочки; напр. при переходе от N4+ к N5+ (электронные конфигурации Is22s и Is2 ). В этом случае ион наиболее устойчив и его полный механич. и полный магнитный моменты равны нулю. Особенно устойчивы, помимо ионов с электронной конфигурацией Is2, ионы с полностью заполненной внешней оболочкой np(n=2, 3, 4, ...).

С в о й с т в а с в я з а н н ы х а т ом о в. Свойства А., находящегося в связанном состоянии, напр. входящего в состав молекулы, отличаются от свойств свободного А. Наибольшие изменения претерпевают свойства А., определяемые самыми внешними электронами, принимающими участие в присоединении данного А. к другому. Вместе с тем свойства, определяемые электронами внутренних оболочек, могут практически не измениться, как это имеет место для рентгеновских спектров. Нек-рые свойства А. могут испытывать сравнительно небольшие изменения, по к-рым можно получить информацию о характере взаимодействий связанных А. Важным примером может служить расщепление уровней энергии А. в кристаллах и комплексных соединениях, к-рое происходит под действием электрич. полей, создаваемых окружающими ионами (см. Кристаллического поля теория). Лит. см. при ст. Атомная физика.

М. А. Елъяшевич.

АТОМИ3ДАТ, специализированное издательство Комитета по печати при Совете Министров СССР, в Москве. Осн. в 1957 как изд-во Гл. управления по использованию атомной энергии при Совете Министров СССР, в 1960-63 - Госатомиздат, с 1963 - А. Выпускает научную, учебную, справочную, производственную и научно-популярную лит-ру по атомной и ядерной физике, физике плазмы, ядерной энергетике, геологии сырья атомной пром-сти, радиохимии, физике твёрдого тела, ядернофизическому и изотопному приборостроению, дозиметрии, радиобиологии, защите от излучений и др. Издаёт журналы "Атомная энергия" (с 1956), "Атомная техника за рубежом" (с 1957).

В. А.Кулямин.

АТОМИЗМ, атомное учение, атомистика, учение о прерывистом, дискретном (зернистом) строении материи. А. утверждает, что материя состоит из отдельных чрезвычайно малых частиц; до конца 19 в. они считались неделимыми. Для совр. А. характерно признание не только атомов (см. также Атомная физика), но и др. частиц материи как более крупных, чем атомы (напр., мо-лекул), так и более мелких (атомные ядра, электроны и др.). С точки зрения совр. А., электроны суть "атомы" отрицат. электричества, фотоны - "атомы" света и т. д. А. распространяется и на биологич. явления, в т. ч. на явления наследственности. В более широком смысле под А. понимается иногда дискретность вообще к.-н. предмета, свойства, процесса (социальный А., логический А.).

А. выступал почти всегда как материа-листич. учение. Поэтому борьба вокруг него отражала прежде всего борьбу между материализмом и идеализмом в науке. А. уже с древности был направлен против идеалистич. и религ. взгляда на мир, ибо всё сущее он объяснял при помощи частиц материи, не прибегая к сверхъес-теств. причинам. Материалистич. течение в А. исходит из тезиса, согласно к-рому атомы материальны, существуют объективно и познаваемы. Идеалистич. позиция выражается в отрицании реальности атомов; в объявлении их лишь удобным средством систематизации опытных данных (см. Махизм), в отрицании их познаваемости.

Атомистич. воззрения первоначально (на Др. Востоке, в античных Греции и Риме, отчасти в ср. века у арабов) были лишь гениальной догадкой, превратившейся затем в науч. гипотезу (17, 18 вв. и первые две трети 19 в.) и, наконец, в научную теорию. С самого зарождения и до конца 1-й четв. 20 в. в основе А. лежала идея о тождестве строения макро- и микрокосмоса. Из непосредственно наблюдаемой расчленённости видимого макромира (прежде всего звёздного) на отдельные более или менее обособленные друг от друга тела был сделан вывод, что природа, будучи единой, должна быть устроена в малейшей своей части так же, как и в величайшей. Древние атомисты считали поэтому непрерывность материи кажущейся, как кажется издали сплошной куча зерна или песка, хотя она состоит из множества отд. частичек.

Признание единства строения макро-и микрокосмоса открывало путь к перенесению на атомы таких механич., физ. или хим. свойств и отношений, к-рые обнаруживались у макротел. Исходя из теоретически предугаданных свойств атомов, можно было сделать заключение о поведении тел, образованных из атомов, а затем экспериментально проверить это теоретич. заключение на опыте.

Идея о полном подобии строения макро-и микрокосмоса, казалось бы, окончательно восторжествовала после создания в нач. 20 в. планетарной модели атома, основу к-рой составляло положение, что атом построен подобно миниатюрной Солнечной системе, где роль Солнца выполняет ядро, а роль планет - электроны, вращающиеся вокруг него по строго определ. орбитам. Почти вплоть до 2-й четв. 20 в. идея единства строения макро- и микрокосмоса понималась слишком упрощённо, прямолинейно, как полное тождество законов и как полное сходство строения того и другого. Отсюда микрочастицы трактовались как миниатюрные копии макротел (как чрезвычайно малые шарики), двигающиеся по точным орбитам, к-рые совершенно аналогичны планетным орбитам, с той лишь разницей, что небесные тела связаны силами гравитац. взаимодействия, а микрочастицы - электрического. Такая форма А. названа классич. А.

Совр. А., воплотившийся в квантовую механику, не отрицает единства природы в большом и малом, но раскрывает качеств. различие микро- и макрообъектов: микрочастицы представляют единство противоположностей прерывности и непрерывности, корпускулярности и волно-образности. Это - не шарики, как думали раньше, а сложные материальные образования, в к-рых дискретность (выраженная в свойствах корпускулы) определ. образом сочетается с непрерывностью (выраженной в волновых свойствах). Поэтому и движение таких частиц (напр., электрона вокруг атомного ядра) совершается не по аналогии с движением планеты вокруг Солнца (т. е. не по строго определённой орбите), а скорее по аналогии с движением облака ("электронное облако"), имеющего как бы размытые края. Такая форма А. названа современным (квантовомеханич.) А.

Виды А. различаются тем, какими конкретными физ. свойствами наделяются атомы и др. частицы материи, как характеризуются формы движения атомов. Первоначально А. носил сугубо абстрактный, натурфилософский характер: атомам приписывались лишь самые общие свойства (неделимость, способность двигаться и соединяться между собой), к-рые не были связаны с к.-л. измеримыми свойствами макротел. В 17-18 вв., когда развилась механика, А. приобрёл механистич. характер; этот вид А. был несколько более конкретен, чем натурфилософия древних, но всё же ещё в большой мере оставался абстрактным и мало связанным с опытной наукой. Атомам приписывались теперь чисто механич. свойства. Представители "механики контакта" считали, что причиной соединения атомов является фигура, геометрич. форма, наделяли атомы крючочками, посредством к-рых атомы якобы сцепляются между собой; иногда атомы изображались в виде зубчатых колесиков, зубцы к-рых подходят друг к другу в случае растворения тел или не подходят в случае их нерастворения (М. В. Ломоносов). Представители "механики сил" (динамики) объясняли взаимодействие атомов наподобие гравитац. тяготения. Поэтому здесь играл роль только вес частиц, а не их геометрич. форма (она принималась шаровидной, как у небесных тел). От динамики И. Ньютона берёт начало особая ветвь А. (хорв. физик Р. И. Бош-кович), в к-рой сочетается идея Г. Лейбница о непространственных монадах (в виде геометрич. точек - центров сил) с понятием "силы" (Ньютон). Этот дина-мич. А. явился предвосхищением совр. А., в к-ром неразрывно сочетается представление о дискретности материи с идеей неразрывности материи и движения (или "силы" в прежнем понимании). Исходя из взглядов Ньютона, Дж. Дальтон (1803) создал хим. А., способный теоретически обобщать и объяснять наблюдённые хим. факты и предвидеть явления, ещё не обнаруженные на опыте. Дальтон наделил атомы "атомным весом", т. е. специфич. массой, характерной для каждого хим. элемента. В "атомном весе" нашла своё выражение мера хим. элемента, представляющая собой единство его качественной (хим. индивидуальность) и количественной (значение "атомного веса") сторон. Развитие этого представления привело впоследствии к созданию Д. И. Менделеевым периодич. системы хим. элементов (1869-71), к-рая, по сути дела, есть узловая линия отношений меры хим. элементов. В сер. 19 в. А. в химии получил дальнейшую конкретизацию в учении о валентности (шотл. химик А. С. Купер, нем. химик Ф. А. Ке-куле) и особенно в теории "хим.строения" (А. М. Бутлеров, 1861). Атомы стали наделяться валентностью, т. е. способностью присоединять 1, 2 и более атомов водорода, валентность к-poro была принята за 1. В 19 в. атомы наделялись всё новыми свойствами, в к-рых резюмировались соответствующие хим. и физ. открытия. В связи с успехами электрохимии атомам стали приписываться электрические заряды (электрохим. теория швед. учёного И. Я. Берцелиуса), взаимодействием которых объяснялись хим. реакции. Открытие законов электролиза (М. Фарадей) и особенно создание теории электролитич. диссоциации (швед. учёный С. А. Аррениус, 1887) привели к обобщению, выраженному в понятии "ион". Ионы это осколки молекул (отдельные атомы или их группы), несущие противоположные по знаку целочисленные электрич. заряды. Дискретность зарядов ионов непосредственно подводила к идее дискретности самого электричества, что вело к идее электрона, к признанию делимости атомов. Во 2-й пол. 19 в. А. конкретизировался как молекулярнофи-зическое учение, благодаря разработке молекулярно-кинетической теории газов, раскрывающей связь между тепловой и механич. формами движения. Осн. положения молекулярной гипотезы зародились ещё и 17 (П. Гассенди) и 18 вв. (Ломоносов), но приобрелПосле открытия электрона (англ. физик Дж. Дж. Томсон, 1897), создания теории квантов (М. Планк, 1900) ии экспериментальный базис лишь благодаря тому, что закон объёмных отношений газов, открытый Ж.Л.Гей-Люссаком (1808), был объяснён при помощи представления о молекулах (А. Авогадро, 1811). С тех пор молекулам приписывались такие физ. свойства и движения, к-рые при их суммировании давали бы значения макроскопических свойств газа как целого, напр, температуры, давления, теплоёмкости и т. д. В дальнейшем А. в физике развился в особую ветвь статистической физики. введения понятия фотона (А. Эйнштейн, 1905) А. принял характер физ. учения, причём идея дискретности была распространена на область электрич. и световых явлений и на понятие энергии, учение о к-рой в 19 в. опиралось на представления о непрерывных величинах и функциях состояния. Важнейшую черту совр. А. составляет А. действия, связанный с тем, что движение, свойства и состояния различных микрообъектов поддаются квантованию, т. е. могут быть выражены в форме дискретных величин и отношений. В итоге вся физика микропроцессов, поскольку она носит квантовый характер, оказывается областью приложения совр. А. Постоянная Планка (квант действия) есть универсальная физ. константа, к-рая выражает количеств. границу, разделяющую две качественно различные области: макро- и микроявлений природы. Физ. (или квантово-электронный) А. достиг особенно больших успехов благодаря созданию (Н. Бор, 1913) и последующей разработке модели атома, к-рая с физ. стороны объясняла периодич. систему элементов. Создание квантовой механики (Л. де Бройль, Э. Шрёдингер, В. Гей-зенберг, П. Дирак и др., 1924-28) придало А. квантовомеханич. характер. Успехи ядерной физики, начиная с открытия атомного ядра (Э. Резерфорд, 1911) и кончая открытием серии элементарных частиц, особенно нейтрона (англ, физик Дж. Чедвик, 1932), позитрона (1932), мезонов различной массы, гиперонов и др., также способствовали конкретизации А. Одновременно в 20 в. шло развитие хим. А. в сторону открытия частиц более крупных, чем обычные молекулы (коллоидные частицы, мицеллы, макромолекулы, частицы высокомолекулярных, высокополимерных соединений); это придавало А. надмолекулярно-хим. характер. В итоге можно выделить главные виды А., к-рые явились вместе с тем историч. этапами в развитии А.: 1) натурфилософский А. древности, 2) механический А. 17-18 вв., 3) химический А. 19 в. и 4) совр. физ. А.

С открытиями в области А. связаны крупные науч. эпохи. "Новая эпоха начинается в химии с атомистики..., - писал Энгельс, - а в физике, соответственно этому,- с молекулярной теории" ("Диалектика природы", 1969, с. 257). Революцию в физике на рубеже 19 и 20 вв. вызвали, по словам В.И. Ленина, "новейшие открытия естествознания - радий, электроны, превращение элементов..." (Поли, собр. соч., 5 изд., т. 23, с. 44). Начало века атомной энергии непосредственно связано с дальнейшим развитием совр. физич. А.

Достижение каждой более глубокой ступени в познании материи и её дискретных видов (её строения), соответственно - сущности более высокого порядка, не завершает движения познания в глубь материи, а кладёт лишь новую веху на этом пути. "Молекула...,- писал Энгельс,- это - „узловая точка" в бесконечном ряду делений, узловая точка, которая не замыкает этого ряда, но устанавливает качественную разницу. Атом, который прежде изображался как предел делимости, теперь - только о т н о ш е-н и е..." (М а р к с К. и Э н г е л ь с Ф., Соч., 2 изд., т. 31, с. 258). Сопоставление атомов с электронами Ленин рассматривал как конкретизацию положения о единстве конечного и бесконечного, где конечное есть лишь звено в бесконеч-

ной цепи отношений: "Применить к атомам versus электроны. Вообще бесконечность материи вглубь..." (Полн. собр. соч., 5 изд., т. 29, с. 100).

Для понимания филос. стороны А. чрезвычайно важно проведённое Энгельсом разграничение между старым и новым А. Старый А. признаёт абс. неделимость и простоту "последних" частиц материи, всё равно, будут ли этими частицами считаться атомы хим. элементов (Дальтон и др. химики) или частицы первома-терии (Бойль и др.). Новый А. фактически исходит из отрицания к.-л. "последних", абсолютно простых, неизменных и неделимых частиц или элементов материи. Отвергая абс. неделимость или непревра-щаемость любой сколь угодно малой частицы материи, новый А. признаёт относит. устойчивость каждого дискретного вида материи, его качественную определённость, его относит. сохраняемость в известных границах. Напр., делимый некоторыми физ. способами, атом неделям химически и в хим. процессах ведёт себя как некое целое, неделимое. Точно так же и молекула: делимая (разложимая) химически на атомы, она в тепловом движении (до известных пределов, когда не наступает термич. диссоциация вещества) ведёт себя тоже как некое целое, неделимое.

Новый А. показывает, что процесс деления материи имеет свои многочисл. границы, при достижении к-рых совершается переход от одной ступени дискретности материи к другой, качественно от неё отличной; количеств. операция деления приводит, т. о., к выходу за пределы данного вида частиц и переходу в область другого их вида. В этом отношении новый А. противостоит, с одной стороны, идее абс. делимости материи до бесконечности (Аристотель, Р. Декарт, динамисты), представляющей пример "дурной бесконечности" (Гегель), а с другой стороны - идее старого А. с его признанием лишь одного вида частиц материи, к-рыми одноактно завершается (точнее: обрывается) процесс деления материи.

На филос. основы совр. А. указал ещё Энгельс: "Новая атомистика отличается от всех прежних тем, что она... не утверждает, будто материя только дискретна, а признаёт, что дискретные части различных ступеней... являются различными узловыми точками, которые обусловливают различные качественные формы существования всеобщей материи..." ("Диалектика природы", 1969, с. 257).

Особенно важно в новом А. признание взаимопревращаемости любых дискретных видов материи, неисчерпаемости любой сколь угодно малой её частицы. "...Диалектический материализм,- писал Ленин, - настаивает на приблизительном, относительном характере всякого научного положения о строении материи и свойствах ее, на отсутствии абсолютных граней в природе, на превращении движущейся материи из одного состояния в другое, по-видимому, с нашей точки зрения, непримиримое с ним и т. д." (Полн. собр. соч., 5 изд., т. 18, с.276). Примером служит взаимопревращение частиц света (фотонов) и частиц вещества (пары - электрона и позитрона - в процессе её рождения из фотонов и обратного её перехода в фотоны при аннигиляции пары).

Отрицание к.-л. "последних", "абсолютно неизменных" и т. д. частиц материи оправдывается всем ходом углубления человеч. познания в строении материи (см. там же, с. 277).

Если старый А. исходил из того, что "последние", "неделимые" атомы находятся во внешнем отношении друг к другу, пространственно сополагаясь одни с другими, то новый А. признаёт такие взаимодействия частиц материи, в результате к-рых они испытывают коренные изменения, теряют свою самостоятельность, свою индивидуальность и как бы растворяются полностью друг в друге, претерпевая глубочайшие качеств. изменения. Так, примером подобных взаимодействий является взаимопревращение элементарных частиц материи.

Неисчерпаемость электрона наглядно обнаружилась после неудачи попыток построить модель атома, исходя из представления об электронах-шариках (или даже точках), наделённых определ. массой и зарядом и двигающихся вокруг ядра по законам классич. механики. Ядерная же физика показала, что электрон может рождаться из нейтрона, гиперонов и мезонов (с выделением нейтрино), может поглощаться и исчезать как частица в атомном ядре (при захвате), может сливаться с позитроном, словом, испытывать такие многообразные и сложные коренные превращения, к-рые неоспоримо свидетельствуют о его реальной неисчерпаемости. В истории познания каждый крупный успех А. составлял не только революцию в физ. учении о материи и её строении, но вместе с тем очередное поражение идеалистич. взгляда на природу (хотя сам по себе А., конечно, отнюдь не всегда и не во всех своих конкретных формах непосредственно выражал науч. истину). Так, открытие Дальтоном закона простых кратных отношений в химии привело в нач. 19 в. к крушению идеалистич. теории динамизма (Кант, Шеллинг, Гегель и др)., согласно к-рой основу природы составляет не материя, а прерывные силы. В конце 19 в. в физике и химии получило распространение феноменологическое, агностич. течение, связанное с термодинамикой и наиболее отчётливо обнаружившееся в энергетич. мировоззрении (В. Оствальд, 1895). Энергетизм, как и махизм, отрицал реальность атомов и молекул; он пытался построить всю физику и химию на представлении о чистой энергии, комплексом различных видов к-рой объявлялась сама материя и все её свойства. Успехи физики и химии на рубеже 19 и 20 вв., особенно подсчёт числа ионов - газовых частиц, несущих электрич. заряды, а также изучение "броуновского движения" и др. показали совпадение значений Авогадро числа, определённого самыми различными физ. методами. В 1908 Оствальд признал своё поражение в борьбе против А. "Я убедился, что в недавнее время нами получены экспериментальные подтверждения прерывного, или зернистого, характера вещества, которое тщетно отыскивала атомистическая гипотеза в течение столетий и тысячелетий. Изолирование и подсчет числа ионов в газах..., а также совпадение законов броуновского движения с требованиями кинетической теории... дают теперь самому осторожному ученому право говорить об экспериментальном подтверждении атомистической теории вещества... Тем самым атомистическая гипотеза поднята на уровень научно обоснованной теории" (Grundriss der allge-meinen Chemie, Lpz., 1909, S. Ill-IV).

В конце 1-й четв. 20 в. оказалось, что выбрасываемые при |3-распаде электроны уносят только часть энергии, теряемой ядром. Отсюда был сделан вывод, что другая её часть попросту уничтожается. Материалистич. решение возникшей трудности (В. Паули, 1931) состояло в предположении, что при (3-распаде наряду с электроном из ядра вылетает другая, неизвестная ещё частица материи, с очень малой массой и электрически нейтральная, к-рую назвали "нейтрино". Без представления о нейтрино невозможно понять мн. ядерные превращения, а также и превращения элементарных частиц (мезонов, нуклонов, гиперонов). Т. о., и здесь успех А. принёс поражение идеализму в физике.

После открытия позитрона И. и Ф. Жолио-Кюри наблюдали (1933) превращение позитронов и электронов в фотоны; наблюдалось также рождение пары - электрона и позитрона - при прохождении фотона у-лучей вблизи атомного ядра. Эти явления были истолкованы как аннигиляция (уничтожение) материи и как её рождение из энергии. Развивая А., физики-материалисты (С. И. Вавилов, Ф. Жолио-Кюри и др.) показали, что в данном случае происходит взаимопревращение одного физ. вида материи (вещества) в другой её вид (свет). Следовательно, и в этом отношении А. нанёс своими открытиями удар идеализму.

Лит.: Маркс К., Различие между натурфилософией Демокрита и натурфилософией Эпикура, в кн.: Маркс К. и Энгельс Ф., Из ранних произведений, М., 1956; Энгельс Ф., Анти-Дюринг, Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20; Резерфорд Э., Строение атома и искусственное разложение элементов, [пер. с англ.], М. - Л., 1923; Бор Н., Три статьи о спектрах и строении атомов, пер. с нем., М., 1923; Маковельский А. О., Древнегреческие атомисты, Баку, 1946; Кедров Б. М., Атомистика Дальтона, М.- Л., 1949; его же, Эволюция понятия элемента в химии, М., 1956; Г е и -зенберг В., Философские проблемы атомной физики, пер. с нем., М., 1953; Зубов В. П., Развитие атомистических представлений до начала XIX в., М., 1965. См. также лит. при ст. Атомная физика.

Б. М. Кедров.

АТОМНАЯ АРТИЛЛЕРИЯ, арт. системы, предназначенные для стрельбы по наземным и мор. целям снарядами как в обычном и хим. снаряжении, так и с ядерным зарядом. Одним из первых образцов таких систем была 280-мм пушка, изготовленная в США. В 1953 на полигоне в штате Невада при испытании этой пушки стреляли атомным снарядом массой ок. 360 кг. Атомный снаряд разорвался в р-не цели на высоте 150 м от земной поверхности и на расстоянии ок. 11 км от огневой позиции. Мощность взрыва была эквивалентна взрыву 15 тыс. т тротила. В армии США для стрельбы снарядами с ядерным зарядом могут использоваться 203,2-мм гаубицы, 175-мм пушки и 155-мм гаубицы. Ведётся также разработка снарядов с ядерным зарядом к ряду орудий др. калибров. Считают, что сочетание ядерных зарядов большой разрушительной силы и арт. орудий, являющихся наиболее экономичным средством доставки заряда к цели, приведёт к коренному изменению боевых возможностей полевой артиллерии и позволит наиболее эффективно поражать цели.

АТОМНАЯ БОМБА, авиац. бомба с ядерным зарядом. Первые А. б. были изготовлены в США в конце 2-й мировой войны. При взрыве А. б. освобождается огромное количество ядерной энергии. В июле 1945 американцы провели испытание А. б., а затем сбросили 2 бомбы с тротиловым эквивалентом 20 тыс. т на япон. города Хиросима (6 авг.) и Нагасаки (9 авг. 1945). Взрыв А. б. вызвал большие разрушения в этих городах и огромные жертвы среди мирного гражданского населения. В Хиросиме было убито и ранено более 140 тыс. чел., а в Нагасаки ок. 75 тыс. чел. В дальнейшем неск. сот тыс. чел. умерло в результате последствий атомной бомбардировки. Применение А. б. не было вызвано воен. необходимостью. Амер. правящие круги, спекулируя на врем. монополии США в области ядерного оружия, пытались использовать его для устрашения свободолюбивых народов. Однако атомные "секреты" уже в 1947 были раскрыты сов. учёными во главе с акад. И.В.Курчатовым, а в авг. 1949 в СССР произведён экспериментальный взрыв атомного устройства, что привело к полному краху атомного шантажа. Термин "А. б." в наст. время употребляется редко (см. Ядерное оружие, Ядерные боеприпасы и лит. к этим статьям).

"АТОМНАЯ ДИПЛОМАТИЯ", термин, обозначающий внешнеполитич. курс США после окончания 2-й мировой войны, в основе к-рого лежало стремление амер. правящих кругов использовать созданный США арсенал ядерного оружия в качестве средства политич. шантажа и давления на др. страны. "А. д." строилась в расчёте сначала на монопольное обладание США атомным оружием, затем на сохранение амер. превосходства в обл. производства атомного оружия и на неуязвимость терр. США. Проводя "А. д.", США отклоняли все предложения Сов. Союза и др. социа-листич. стран о запрещении использования, прекращении производства и уничтожении запасов ядерного оружия. Создание в СССР атомного (1949) и водородного (1953) оружия, а в последующем и межконтинентальных ракет обрекло на провал "А. д.".

АТОМНАЯ МАССА, атомный вес, значение массы атома, выраженное в атомных единицах массы. Применение особой единицы для измерения А. м. связано с тем, что массы атомов чрезвычайно малы (10-22-10-24 г) и выражать их в граммах неудобно. За единицу А. м. принята 1/12 часть массы изотопа атома углерода 12С. Масса углеродной единицы (сокращённо у. е.) равна (1,660 43± ±0,00031)-10-24 г. Обычно при указании А. м. обозначение "у. е." опускают. Понятие "А. м." ввёл Дж. Дальтон (1803). Он же впервые определил А. м. Обширные работы по установлению А. м. были выполнены в 1-й пол. 19 в. Я. Берцелиусом, позднее Ж. С. Стасом и Т. У. Ричардсом. В 1869 Д. И. Менделеев открыл закон периодич. зависимости свойств элементов от А. м. и на его основе исправил А. м. многих известных в то время элементов (Be, U, La и др.) и, кроме того, предсказал А. м. ещё не открытых тогда Ga, Ge, Sc. После открытия Ф. Содди (1914) явления изотопии (см. Изотопы) понятие "А. м." стали относить и к элементам, состоящим из смеси изотопов, и к отдельным изотопам. Для элементов, к-рые представлены в природе одним изотопом (напр., F, A1), А. м. элемента совпадает с А. м. этого изотопа. Если элемент - смесь изотопов, то его А. м. вычисляют как среднее значение из А. м. отдельных его изотопов, с учётом относит. содержания каждого из них. Так, природный хлор состоит из изотопов 35С1 (75,53% ) и 37С1 (24,47% ), массы атомов к-рых соответственно равны 34,964 и 36,961. А. м. элемента С1 равна: (34,964*75,53+36,961*24,47)/100=35,453

Колебания природного изотопного состава у большинства элементов пренебрежимо малы (менее 0,003%); поэтому каждый элемент имеет практически постоянную А. м., являющуюся одной из важнейших характеристик элемента. Близость к целым числам А. м. элементов, представленных в природе одним изотопом, объясняется тем, что почти вся масса атома заключена в его ядре, а массы составляющих ядро протонов и нейтронов близки к 1. В то же время значения А. м. изотопов (кроме 12С, масса к-рого принята равной 12,00000) никогда точно не равны целым числам. Это объясняется, во-первых, тем, что относительные массы нейтрона и протона немного больше 1 (соответственно 1,008 665 4 и 1,007 276 63), во-вторых, дефектом массы и, в-третьих, небольшим вкладом в общую массу атома массы электронов.

По предложению Дж. Дальтона (1803) единицей А. м. сначала служила масса атома водорода (водородная шкал а). В 1818 Берцелиус опубликовал таблицу А. м., отнесённых к А. м. кислорода, принятой равной 10Э. Система А. м. Берцелиуса господствовала до 1860-х гг., когда химики опять приняли водородную шкалу. Но в 1906 они перешли на кислородную шкалу, по к-рой за единицу А. м. принимали 1/16 часть А. м. кислорода. После открытия изотопов кислорода (16О, 17О, 18О) А. м. стали указывать по двум шкалам: химической, в основе к-рой лежала 1/16 часть средней массы атома природного кислорода, и физической с единицей массы, равной 1/16массы атома 16О. Использование двух шкал имело ряд недостатков, вследствие чего в 1961 перешли к единой, углеродной шкале.

Для нахождения А. м. пользуются различными методами. Часть их основана на экспериментальном определении молекулярной массы к.-л. соединения данного элемента. В этом случае А. м. равна доле молекулярной массы, приходящейся на этот элемент, делённой на число его атомов в молекуле. Точные значения А. м. можно найти, определяя хим. анализом эквивалент химический элемента (А. м. равна произведению эквивалента на валентность). С наибольшей точностью (до 0,001% и выше) А. м. можно определить методом масс-спектроскопии; масс-спектр элемента даёт сведения о количественном изотопном составе и о массах атомов отдельных изотопов, на основании чего легко рассчитать А. м. (см. выше пример с 35С1 и 37С1). А. м. вновь синтезируемых элементов оценивают на основе рассмотрения ядерной реакции их образования.

Совр. значения А. м. приведены в статьях о хим. элементах и в статье Периодическая система элементов Д. И. Менделеева.

Лит.: Менделеев Д. И., Основы химии, 13 изд., т. 1 - 2, М.- Л., 1947; Н е-к р а с о в Б. В., Основы общей химии, т. 1, М., 1965; П о л и н г Л., Общая химия, пер.

с англ., М., 1964; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963; Д ж у а М., История химии, пер. с итал., М., 1966. С. С. Бердоносов.

АТОМНАЯ ПОДВОДНАЯ ЛОДКА, см. в ст. Атомный флот и Подводная лодка.

АТОМНАЯ СЕКУНДА, единичный интервал времени, равный 9 192 631 770 периодам колебаний цезиевого эталона частоты (см. Квантовые стандарты частоты).

АТОМНАЯ ФИЗИКА, раздел физики, в к-ром изучают строение и состояние атомов. А. ф. возникла в кон. 19 - нач. 20 вв. В 10-х гг. 20 в. было установлено, что атом состоит из ядра и электронов, связанных электрич. силами. На первом этапе своего развития А. ф. охватывала также вопросы, связанные со строением атомного ядра. В 30-х гг. выяснилось, что природа взаимодействий, имеющих место в атомном ядре, иная, чем во внешней оболочке атома, и в 40-х гг. ядерная физика выделилась в самостоят. область науки. В 50-х гг. от неё отпочковалась физика элементарных частиц, или физика высоких энергий.

Предыстория атомной физики: учение об атомах в 17 -19 вв. Мысль о существовании атомов как неделимых частиц материи возникла ещё в древности; идеи атомизма впервые были высказаны др.-греч. мыслителями Демокритом и Эпикуром. В 17 в. они были возрождены франц. философом П. Гассенди и англ. химиком Р. Бойлем.

Представления об атомах, господствовавшие в 17-18 вв., были малоопреде-лимыми. Атомы считались абсолютно неделимыми и неизменными твёрдыми частицами, различные виды к-рых отличаются друг от друга по размеру и форме. Сочетания атомов в том или ином порядке образуют различные тела, движения атомов обусловливают все явления, происходящие в веществе. И. Ньютон, М. В. Ломоносов и нек-рые др. учёные полагали, что атомы могут сцепляться в более сложные частицы - "корпускулы". Однако а'томам не приписывали определённых хим. и физ. свойств. Атомистика ещё носила абстрактный, натурфилософский характер.

В конце 18 - нач. 19 вв. в результате быстрого развития химии была создана основа для количественной разработки атомного учения. Англ. учёный Дж. Дальтон впервые (1803) стал рассматривать атом как мельчайшую частицу хим. элемента, отличающуюся от атомов др. элементов своей массой. По Дальтону, основной характеристикой атома является атомная масса. Хим. соединения представляют собой совокупность "составных атомов", содержащих определённые (характерные для данного сложного вещества) числа атомов каждого элемента. Все хим. реакции являются лишь перегруппировками атомов в новые сложные частицы. Исходя из этих положений, Дальтон сформулировал свой закон кратных отношений (см. Кратных отношений закон). Исследования итал. учёных А. Авогадро (1811) и, в особенности, С. Канниццаро (1858) провели чёткую грань между атомом и молекулой. В 19 в. наряду с хим. свойствами атомов были изучены их оптич. свойства. Было установлено, что каждый элемент обладает характерным оптическим спектром; был открыт спектральный анализ (нем. физики Г. Кирхгоф и Р. Бунзен, I860).

Т. о., атом предстал как качественно своеобразная частица вещества, характеризуемая строго определёнными физ. и хим. свойствами. Но свойства атома считались извечными и необъяснимыми. Полагали, что число видов атомов (хим. элементов) случайно и что между ними не существует никакой связи. Однако постепенно выяснилось, что существуют группы элементов, обладающих одинаковыми хим. свойствами - одинаковой макс. валентностью, и сходными законами изменения (при переходе от одной группы к другой) физ. свойств -темп-ры плавления, сжимаемости и др. В 1869 Д. И. Менделеев открыл периодическую систему элементов. Он показал, что с увеличением атомной массы элементов их хим. и физ. свойства периодически повторяются (рис. 1 и 2).

Периодич. система доказала существование связи между различными видами атомов. Напрашивался вывод, что атом имеет сложное строение, изменяющееся с атомной массой. Проблема раскрытия структуры атома стала важнейшей в химии и в физике (подробнее см. Атомизм).

Возникновение атомной физики. Важнейшими событиями в науке, от к-рых берёт начало А. ф., были открытия электрона и радиоактивности. При исследовании прохождения электрич. тока через сильно разреженные газы были открыты лучи, испускаемые катодом разрядной трубки (катодные лучи) и обладающие свойством отклоняться в поперечном электрич. и магнитном полях. Выяснилось, что эти лучи состоят из быстро летящих отрицательно заряженных частиц, названных электронами. В 1897 англ. физик Дж. Дж. Томсон измерил отношение заряда е этих частиц к их массе т. Было также обнаружено, что металлы при сильном нагревании или освещении светом короткой длины волны испускают электроны (см. Термоэлектронная эмиссия, Фотоэлектронная эмиссия). Из этого было сделано заключение, что электроны входят в состав любых атомов. Отсюда далее следовало, что нейтральные атомы должны также содержать и положительно заряженные частицы. Положительно заряженные атомы - ионы - были действительно обнаружены при исследовании электрич. разрядов в разреженных газах. Представление об атоме как о системе заряженных частиц объясняло, согласно теории голл. физика X. Лоренца, саму возможность излучения атомом света (электромагнитных волн): электромагнитное излучение возникает при колебаниях внутриатомных зарядов; это получило подтверждение при исследовании действия магнитного поля на атомные спектры (см. Зеемана явление). Выяснилось, что отношение заряда внутриатомных электронов к их массе elm, найденное Лоренцом в его теории явления Зеемана, в точности равно значению e/m для свободных электронов, полученному в опытах Томсона. Теория электронов и её экспериментальное подтверждение дали бесспорное доказательство сложности атома.

Представление о неделимости и непре-вращаемости атома было окончательно опровергнуто работами франц. учёных М. Склодовской-Кюри и П. Кюри. В результате изучения радиоактивности было установлено (Ф. Содди), что атомы испытывают превращения двух типов. Испустив а-частицу (ион гелия с положит. зарядом 2е), атом радиоактивного хим. элемента превращается в атом другого элемента, расположенного в перио-дич. системе на 2 клетки левее, напр. атом полония - в атом свинца. Испустив (3-ча-стицу (электрон) с отрицат. зарядом -е, атом радиоактивного хим. элемента превращается в атом элемента, расположенного на 1 клетку правее, напр. атом висмута - в атом полония. Масса атома, образовавшегося в результате таких превращений, оказывалась иногда отличной от атомного веса того элемента, в клетку к-рого он попадал. Отсюда следовало существование разновидностей атомов одного и того же хим. элемента с различными массами; эти разновидности в дальнейшем получили название изотопов (т. е. занимающих одно и то же место в таблице Менделеева). Итак, представления об абс. тождественности всех атомов данного хим. элемента оказались неверными.

Результаты исследования свойств электрона и радиоактивности позволили строить конкретные модели атома. В модели, предложенной Томсоном в 1903, атом представлялся в виде положительно заряженной сферы, в к-рую вкраплены незначительные по размеру (по сравнению с атомом) отрицат. электроны (рис. 3).

Рис. 3. Модель атома Томсона. Точками обозначены электроны, вкрапленные в положительно заряженную сферу.

Они удерживаются в атоме благодаря тому, что силы притяжения их распределённым положит. зарядом уравновешиваются силами их взаимного отталкивания. Томсоновская модель давала известное объяснение возможности испускания, рассеяния и поглощения света атомом. При смещении электронов из положения равновесия возникает "упругая" сила, стремящаяся восстановить равновесие; эта сила пропорциональна смещению электрона из равновесного положения и, следовательно, диполъному моменту атома. Под действием электрич. сил падающей электромагнитной волны электроны в атоме колеблются с той же частотой, что и электрич. напряжённость в световой волне; колеблющиеся электроны, в свою очередь, испускают свет той же частоты. Так происходит рассеяние электромагнитных волн атомами вещества. По степени ослабления светового пучка в толще вещества можно узнать общее число рассеивающих электронов, а зная число атомов в единице объёма, можно определить число электронов в каждом атоме.

Создание Резерфордом планетарной модели атома. Модель атома Томсона оказалась неудовлетворительной. На её основе не удалось объяснить совершенно неожиданный результат опытов англ. физика Э. Резерфорда и его сотрудников X. Гейгера и Э. Марсдена по рассеянию а-частиц атомами. В этих опытах быстрые а-частицы были применены для прямого зондирования атомов. Проходя через вещество, а-частицы сталкиваются с атомами.

При каждом столкновении а-частица, пролетая через электрическое поле атома, изменяет направление движения - испытывает рассеяние. В подавляющем большинстве актов рассеяния отклонения а-частиц (углы рассеяния) были очень малы. Поэтому при прохождении пучка а-частиц через тонкий слой вещества происходило лишь небольшое размытие пучка. Однако очень малая доля а-частиц отклонялась на углы более 90°. Этот результат нельзя было объяснить на основе модели Томсона, т. к. электрич. поле в "сплошном" атоме недостаточно сильно, чтобы отклонить быструю и массивную а-частицу на большой угол. Чтобы объяснить результаты опытов по рассеянию а-частиц, Резерфорд предложил принципиально новую модель атома, напоминающую по строению Солнечную систему и получившую назв. планетарной. Она имеет след. вид. В центре атома находится положительно заряженное ядро, размеры к-рого ( ~ 10- 12 см) очень малы по сравнению с размерами атома (~10-8 см), а масса почти равна массе атома. Вокруг ядра движутся электроны, подобно планетам вокруг Солнца; число электронов в незаряженном (нейтральном) атоме таково, что их суммарный отрицат. заряд компенсирует (нейтрализует) положительный заряд ядра. Электроны должны двигаться вокруг ядра, в противном случае они упали бы на него под действием сил притяжения. Различие между атомом и планетной системой состоит в том, что в последней действуют силы тяготения, а в атоме - электрич. (кулоновские) силы. Вблизи ядра, к-рое можно рассматривать как точечный положит. заряд, существует очень сильное электрическое поле. Поэтому, пролетая вблизи ядра, положительно заряженные а-частицы (ядра гелия) испытывают сильное отклонение (см. рис. 4). В дальнейшем было выяснено (Г. Мозли), что заряд ядра возрастает от одного хим. элемента к другому на элементарную единицу заряда, равную заряду электрона (но с положит. знаком). Численно заряд ядра атома, выраженный в единицах элементарного заряда е, равен порядковому номеру соответствующего элемента в периодич. системе.

Рис. 4. Фотография следов а-частиц в кислороде; короткий след принадлежит атому кислорода, более длинный - а-ча-стице, отклонившейся при столкновении примерно на 90° от первоначального направления.

Для проверки планетарной модели Резерфорд и его сотрудник Ч. Дарвин подсчитали угловое распределение сх-ча-стиц, рассеянных точечным ядром - центром кулоновских сил. Полученный результат был проверен опытным путём - измерением числа а-частиц, рассеянных под разными углами. Результаты опыта в точности совпали с теоретич. расчётами, блестяще подтвердив тем самым планетарную модель атома Резерфорда.

Однако планетарная модель атома натолкнулась на принципиальные трудности. Согласно классич. электродинамике, заряженная частица, движущаяся с ускорением, непрерывно излучает электромагнитную энергию. Поэтому электроны, двигаясь вокруг ядра, т. е. ускоренно, должны были бы непрерывно терять энергию на излучение. Но при этом они за ничтожную долю секунды потеряли бы всю свою кинетич. энергию и упали бы на ядро. Другая трудность, связанная также с излучением, состояла в следующем: если принять (в соответствии с классич. электродинамикой), что частота излучаемого электроном света равна частоте колебаний электрона в атоме (т. е. числу оборотов, совершаемых им по своей орбите в одну секунду) или имеет кратное ей значение, то излучаемый свет по мере приближения электрона к ядру должен был бы непрерывно изменять свою частоту, и спектр излучаемого им света должен быть сплошным. Но это противоречит опыту. Атом излучает световые волны вполне определённых частот, типичных для данного хим. элемента, и характеризуется спектром, состоящим из отдельных спектральных линий - линейчатым спектром. В линейчатых спектрах элементов был экспериментально установлен ряд закономерностей, первая из к-рых была открыта швейц. учёным И. Баль-мером (1885) в спектре водорода. Наиболее общая закономерность - комб и н а ц и о н н ы й п р и н ц и п - была найдена австр. учёным В. Ритцем (1908). Этот принцип можно сформулировать следующим образом: для атомов каждого элемента можно найти последовательность чисел 7*i, Т2, Т3 , ... -т. н. с п е к т р а л ь н ы х      т е р м о в, таких, что частота v каждой спектральной линии данного элемента выражается в виде разности двух термов: v = Tk-Ti. Для атома водорода терм Tn=R/n2, где n - целое число, принимающее значение n = 1, 2, 3, ..., a R - т. н. постоянная Ридберга (см. Ридберга постоянная).

T. о., в рамках модели атома Резерфорда не могли быть объяснены устойчивость атома по отношению к излучению и линейчатые спектры его излучения. На её основе не могли быть объяснены и законы теплового излучения, и законы фо-тоэлектрич. явдений, к-рые возникают при взаимодействии излучения с веществом. Эти законы оказалось возможным объяснить, исходя из совершенно новых - квантовых - представлений, впервые введённых нем. физиком М. План-ком (1900). Для вывода закона распределения энергии в спектре теплового излучения - излучения нагретых тел - Планк предположил, что атомы вещества испускают электромагнитную энергию (свет) в виде отдельных порций - квантов света, энергия к-рых пропорциональна v (частоте излучения): E=hv, где h - постоянная, характерная для квантовой теории и получившая назв. Планка постоянной. В 1905 А. Эйнштейн дал квантовое объяснение фотоэлектрич. явлений, согласно к-рому энергия кванта hv идёт на вырывание электрона из металла-работа выхода Р - и на сообщение ему кинетич. энергии Ткин ; hv = Р + Ткин . При этом Эйнштейн ввёл понятие о квантах света как особого рода частицах; эти частицы впоследствии получили название фотонов.

Противоречия модели Резерфорда оказалось возможным разрешить, лишь отказавшись от ряда привычных представлений классич. физики. Важнейший шаг в построении теории атома был сделан дат. физиком Н. Бором (1913).

Постулаты Бора и модель атома Бора. В основу квантовой теории атома Бор положил 2 постулата, характеризующих те свойства атома, к-рые не укладывались в рамки классич. физики. Эти постулаты Бора могут быть сформулированы следующим образом:

1. С у щ е с т в о в а н и е             с т ац и о н а р н ы х           с о с т о я н и й. Атом не излучает и является устойчивым лишь в нек-рых стационарных (неизменных во времени) состояниях, соответствующих дискретному (прерывному) ряду "дозволенных" значений энергии E1 , Е2, Ез, E4 , ... Любое изменение энергии связано с квантовым (скачкообразным) переходом из одного стационарного состояния в другое.

2. У с л о в и е        ч а с т о т           и з л уч е н и я (квантовых переходов с излучением). При переходе из одного стационарного состояния с энергией Ei в другое с энергией Eк , атом испускает или поглощает свет определённой частоты v в виде кванта излучения (фотона) hv, согласно соотношению hv = Ei-Eк . При испускании атом переходит из состояния с большей энергией Ei в состояние с меньшей энергией Ек , при поглощении, наоборот, из состояния с меньшей энергией Ек в состояние с большей энергией Ei.

Постулаты Бора сразу позволяют понять физ. смысл комбинационного принципа Ритца (см. выше); сравнение соотношений hv=Eiк и v = Tk-Ti показывает, что спектральные термы соответствуют стационарным состояниям, и энергия последних должна равняться (с точностью до постоянного слагаемого) Ei = -hTi, Eк = -hTk.

При испускании или поглощении света изменяется энергия атома, это изменение равно энергии испущенного или поглощённого фотона, т. е. имеет место закон сохранения энергии. Линейчатый спектр атома является результатом дискретности возможных значений его энергии.

Для определения дозволенных значений энергии атома - квантования его энергии - и для нахождения характеристик соответствующих стационарных состояний Бор применил классич. (ньютоновскую) механику. "Если мы желаем вообще составить наглядное представление о стационарных состояниях, у нас нет других средств, по крайней мере сейчас, кроме обычной механики", - писал Бор в 1913 ("Три статьи о спектрах и строении атомов", М.- Л., 1923, с. 22). Для простейшего атома - атома водорода, состоящею из ядра с зарядом +е (протона) и электрона с зарядом -е, Бор рассмотрел движение электрона вокруг ядра по круговым орбитам. Сравнивая энергию атома Е со спектральными термами Tn=R/n2 для атома водорода, найденными с большой точностью из частот его спектральных линий, он получил возможные значения энергии атома Еn = -hТn = -hR/п2 (где п= 1,2,3, ...). Они соответствуют круговым орбитам радиуса ап0 nг, где а0=0,53-10-8 см - боровский радиус - радиус наименьшей круговой орбиты (при n = 1). Бор вычислил частоты обращения vn электрона вокруг ядра по круговым орбитам в зависимости от энергии электрона. Оказалось, что частоты излучаемого атомом света не совпадают с частотами обращения vn, как этого требует классич. электродинамика, а пропорциональны, согласно соотношению hv=Eiк, разности энергий электрона на двух возможных орбитах.

Для нахождения связи частоты обращения электрона по орбите и частоты излучения Бор сделал предположение, что результаты квантовой и классич. теорий должны совпадать при малых частотах излучения (для больших длин волн; такое совпадение имеет место для теплового излучения, законы к-рого были выведены Планком). Он приравнял для больших п частоту перехода v = (Еn+1 - En)/h частоте обращения vn по орбите с данным n и вычислил значение постоянной Ридберга R, к-рое с большой точностью совпало со значением R, найденным из опыта, что подтвердило боровское предположение. Бору удалось также не только объяснить спектр водорода, но и убедительно показать, что нек-рые спектральные линии, к-рые приписывались водороду, принадлежат гелию. Предположение Бора о том, что результаты квантовой и классич. теорий должны совпадать в предельном случае малых частот излучения, представляло первоначальную форму т. н. принципа соответствия. В дальнейшем Бор успешно применил его для нахождения интенсивностей линий спектра. Как показало развитие совр. физики, принцип соответствия оказался весьма общим (см. Соответствия принцип).

В теории атома Бора квантование энергии, т. е. нахождение её возможных значений, оказалось частным случаем общего метода нахождения "дозволенных" орбит. Согласно квантовой теории, такими орбитами являются только те, для которых момент количества движения электрона в атоме равен целому кратному h/2п. Каждой дозволенной орбите соответствует определённое возможное значение энергии атома (см. Атом).

Основные положения квантовой теории атома - 2 постулата Бора - были всесторонне подтверждены экспериментально. Особенно наглядное подтверждение дали опыты нем. физиков Дж. Франка и Г. Герца (1913-16). Суть этих опытов такова. Поток электронов, энергией к-рых можно управлять, попадает в сосуд, содержащий пары ртути. Электронам сообщается энергия, которая постепенно повышается. По мере увеличения энергии электронов ток в гальванометре, включённом в электрич. цепь, увеличивается; когда же энергия электронов оказывается равной определённым значениям (4,9; 6,7; 10,4 эв), ток резко падает (рис. 5). Одновременно можно обнаружить, что пары ртути испускают ультрафиолетовые лучи определённой частоты.

Изложенные факты допускают только одно истолкование. Пока энергия электронов меньше 4,9 эв, электроны при столкновении с атомами ртути не теряют энергии - столкновения имеют упругий характер. Когда же энергия оказывается равной определённому значению, именно 4,9 эв, электроны передают свою энергию атомам ртути, к-рые затем испускают её в виде квантов ультрафиолетового света. Расчёт показывает, что энергия этих фотонов равна как раз той энергии, к-рую теряют электроны. Эти опыты доказали, что внутр. энергия атома может иметь только определённые дискретные значения, что атом поглощает энергию извне и испускает её сразу целыми квантами и что, наконец, частота испускаемого атомом света соответствует теряемой атомом энергии.

Дальнейшее развитие А. ф. показало справедливость постулатов Бора не только для атомов, но и для других мик-роскопич. систем - для молекул и для атомных ядер. Эти постулаты следует рассматривать как твёрдо установленные опытные квантовые законы. Они составляют ту часть теории Бора, к-рая не только сохранилась при дальнейшем развитии квантовой теории, но и получила своё обоснование. Иначе обстоит дело с моделью атома Бора, основанной на рассмотрении движения электронов в атоме по законам классич. механики при наложении дополнит. условий квантования. Такой подход позволил получить целый ряд важных результатов, но был непоследовательным: квантовые постулаты были присоединены к законам классич. механики искусственно. Последовательной теорией явилась созданная в 20-х гг. 20 в. квантовая механика. Её создание было подготовлено дальнейшим развитием модельных представлений теории Бора, в ходе к-рого выяснились её сильные и слабые стороны.

Развитие модельной теории атома Бора. Весьма важным результатом теории Бора было объяснение спектра атома водорода. Дальнейший шаг в развитии теории атомных спектров был сделан нем. физиком А. Зоммерфельдом. Разработав более детально правила квантования, исходя из более сложной картины движения электронов в атоме (по эллиптич. орбитам) и учитывая экранирование внешнего (т. н. валентного) электрона в поле ядра и внутренних электронов, он сумел дать объяснение ряда закономерностей спектров щелочных металлов.

Теория атома Бора пролила свет и на структуру т. н. характеристических спектров рентгеновского излучения. Рентгеновские спектры атомов так же, как и их оптические спектры, имеют дискретную линейчатую структуру, характерную для данного элемента (отсюда и название). Исследуя характеристич. рентгеновские спектры различных элементов, англ. физик Г. Мозли открыл след. закономерность: квадратные корни из частот испускаемых линий равномерно возрастают от элемента к элементу по всей периодич. системе Менделеева пропорционально атомному номеру элемента. Интересно то обстоятельство, что закон Мозли полностью подтвердил правоту Менделеева, нарушившего в нек-рых случаях принцип размещения элементов в таблице по возрастающему атомному весу и поставившего нек-рые более тяжёлые элементы впереди более лёгких.
 
 


 
 
 

На основе теории Бора удалось дать объяснение и периодичности свойств атомов. В сложном атоме образуются электронные оболочки, к-рые последовательно заполняются, начиная от самой внутренней, определёнными числами электронов (физ. причина образования оболочек стала ясна только на основании принципа Паули, см. ниже). Структура внешних электронных оболочек периодически повторяется, что обусловливает периодич. повторяемость хим. и многих физ. свойств элементов, расположенных в одной и той же группе периодич. системы. На основе же теории Бора нем. химиком В. Косселем были объяснены (1916) хим. взаимодействия в т. н. гете-рополярных молекулах.

Однако далеко не все вопросы теории атома удалось объяснить на основе модельных представлений теории Бора. Она не справлялась со многими задачами теории спектров, позволяла получать лишь правильные значения частот спектральных линий атома водорода и водоро-доподобных атомов, интенсивности же этих линий оставались необъяснёнными; Бору для объяснения интенсивностей пришлось применить принцип соответствия.

При переходе к объяснению движений электронов в атомах, более сложных, чем атом водорода, модельная теория Бора оказалась в тупике. Уже атом гелия, в к-ром вокруг ядра движутся 2 электрона, не поддавался теоретич. интерпретации на её основе. Трудности при этом не исчерпывались количественными расхождениями с опытом. Теория оказалась бессильной и в решении такой проблемы, как соединение атомов в молекулу. Почему 2 нейтральных атома водорода соединяются в молекулу водорода? Как вообще объяснить природу валентности? Что связывает атомы твёрдого тела? Эти вопросы оставались без ответа. В рамках боровской модели нельзя было найти подхода к их решению.

Квантовомеханическая теория атома. Ограниченность боровской модели атома коренилась в ограниченности классич. представлений о движении микрочастиц. Стало ясно, что для дальнейшего развития -теории атома необходимо критически пересмотреть основные представления о движении и взаимодействии микрочастиц. Неудовлетворительность модели, основанной на классич. механике с добавлением условий квантования, отчётливо понимал и сам Бор, взгляды к-рого оказали большое влияние на дальнейшее развитие А. ф. Началом нового этапа развития А. ф. послужила идея, высказанная франц. физиком Л. де Бройлем (1924) о двойственной природе движения микрообъектов, в частности электрона (см. Волны де Бройля). Эта идея стала исходным пунктом квантовой механики, созданной в 1925-26 трудами В. Гейзен-берга и М. Борна (Германия), Э. Шрёдин-гера (Австрия) и П. Дирака (Англия), и разработанной на её основе совр. кванто-вомеханич. теории атома.

Представления квантовой механики о движении электрона (вообще микрочастицы) коренным образом отличаются от классических. Согласно квантовой механике, электрон не движется по траектории (орбите), подобно твёрдому шарику;

движению электрона присущи также и нек-рые особенности, характерные для распространения волн. С одной стороны, электрон всегда действует (напр., при столкновениях) как единое целое, как частица, обладающая неделимым зарядом и массой; в то же время электроны с определённой энергией и импульсом распространяются подобно плоской волне, обладающей определённой частотой (и определённой длиной волны). Энергия электрона Е как частицы связана с частотой v электронной волны соотношением: E = hv, а его импульс р - с длиной волны Лямбда соотношением: p = h/лямбда,

Устойчивые движения электрона в атоме, как показал Шрёдингер (1926), в нек-ром отношении аналогичны стоячим волнам, амплитуды к-рых в разных точках различны. При этом в атоме, как в колебат. системе, возможны лишь нек-рые "избранные" движения с определёнными значениями энергии, момента количества движения и проекции момента электрона в атоме. Каждое стационарное состояние атом? описывается при помощи нек-рой волновой функции, являющейся решением волнового уравнения особого типа - уравнения Шрёдингера; волновой функции соответствует "электронное облако", характеризующее (в среднем) распределение плотности электронного заряда в атоме (см. Атом; там же на рис. 3 показаны проекции "электронных облаков" атома водорода). В 20-30-х гг. были разработаны приближённые методы расчёта распределения плотности электронного заряда в сложных атомах, в частности метод Томаса - Ферми (1926, 1928). Эта величина и связанное с ней значение т. н. атомного фактора важны при исследовании электронных столкновений с атомами, а также рассеяния ими рентгеновских лучей.

На основе квантовой механики удалось путём решения ур-ния Шрёдингера правильно рассчитать энергии электронов в сложных атомах. Приближённые методы таких расчётов были разработаны в 1928 Д. Хартри (Англия) и в 1930 В. А. Фоком (СССР). Исследования атомных спектров полностью подтвердили квантовомеханич. теорию атома. При этом выяснилось, что состояние электрона в атоме существенно зависит от его спина - собственного механич. момента количества движения. Было дано объяснение действия внешних электрич. и магнитных полей на атом (см. Штарка явление, Зеемана явление). Важный общий принцип, связанный со спином электрона, был открыт щвейц. физиком В. Паули (1925) (см. Паули принцип); согласно этому принципу, в каждом электронном состоянии в атоме может находиться только один электрон; если данное состояние уже занято к.-л. электроном, то последующий электрон, входя в состав атома, вынужден занимать другое состояние. На основе принципа Паули были окончательно установлены числа заполнения электронных оболочек в сложных атомах, определяющие периодичность свойств элементов. Исходя из квантовой механики, нем. физики В. Гейтлер и Ф. Лондон (1927) дали теорию т. н. гомеополярной хим. связи двух одинаковых атомов (напр., атомов водорода в молекуле Н2),не объяснимой в рамках боровской модели атома.

Важными применениями квантовой механики в 30-х гг. и в дальнейшем были исследования связанных атомов, входящих в состав молекулы или кристалла. Состояния атома, являющегося частью молекулы, существенно отличаются от состояний свободного атома. Существенные изменения претерпевает атом также в кристалле под действием внутри-кристаллич. поля, теория к-рого была впервые разработана X. Бете (1929). Исследуя эти изменения, можно установить характер взаимодействия атома с его окружением. Крупнейшим экспериментальным достижением в этой области А. ф. было открытие Е. К. Завойским в 1944 электронного парамагнитного резонанса, давшего возможность изучать различные связи атомов с окружающей средой.

Современная атомная физика. Осн. разделами совр. А. ф. являются теория атома, атомная (оптическая) спектроскопия, рентгеновская спектроскопия, радиоспектроскопия (она исследует также и вращательные уровни молекул), физика атомных и ионных столкновений. Различные разделы спектроскопии охватывают разные диапазоны частот излучения и, соответственно, разные диапазоны энергий квантов. В то время как рентгеновская спектроскопия изучает излучения атомов с энергиями квантов до сотен тыс. эв, радиоспектроскопия имеет дело с очень малыми квантами - вплоть до квантов менее 10-6 эв.

Важнейшая задача А. ф.- детальное определение всех характеристик состояний атома. Речь идёт об определении возможных значений энергии атома - его уровней энергии, значений моментов количества движения и др. величин, характеризующих состояния атома. Исследуются тонкая и сверхтонкая структуры уровней энергии (см. Атомные спектры), изменения уровней энергии под действием электрич. и магнитного полей -как внешних, макроскопических, так и внутренних, микроскопических. Большое значение имеет такая характеристика состояний атома, как время жизни электрона на уровне энергии. Наконец, большое внимание уделяется механизму возбуждения атомных спектров.

Области явлений, исследуемых разными разделами А. ф., перекрываются. Рентгеновская спектроскопия измерением испускания и поглощения рентгеновских лучей позволяет определить гл. обр. энергии связи внутр. электронов с ядром атома (энергии ионизации), распределение электрич. поля внутри атома. Оптич. спектроскопия изучает совокупности спектральных линий, испускаемых атомами, определяет характеристики уровней энергии атома, интенсивности спектральных линий и связанные с ними времена жизни атома в возбуждённых со стояниях, тонкую структуру уровней энергии, их смещение и расщепление в электрич. и магнитном полях. Радиоспектроскопия детально исследует ширину и форму спектральных линий, их сверхтонкую структуру, сдвиг и расщепление в магнитном поле, вообще внутриатомные процессы, вызываемые очень (слабыми взаимодействиями и влияниями среды.

Анализ результатов столкновений быстрых электронов и ионов с атомами даёт возможность получить сведения о распределении плотности электронного заряда ("электронного облака") внутри атома, об энергиях возбуждения атома, энергиях ионизации.

Результаты детального исследования строения атомов находят самые широкие применения не только во мн. разделах физики, но и в химии, астрофизике и др. областях науки. На основании изучения уширения и сдвига спектральных линий можно судить о местных (локальных) полях в среде (жидкости, кристалле), обусловливающих эти изменения, и о состоянии этой среды (темп-ре, плотности и др.). Знание распределения плотности электронного заряда в атоме и её изменений при внешних взаимодействиях позволяет предсказать тип хим. связей, к-рые может образовывать атом, поведение иона в кристаллич. решётке. Сведения о структуре и характеристиках уровней энергии атомов и ионов чрезвычайно важны для устройств квантовой электроники. Поведение атомов и ионов при столкновениях - их ионизация, возбуждение, перезарядка - существенно для физики плазмы. Знание детальной структуры уровней энергии атомов, особенно многократно ионизованных, важно для астрофизики.

Таким образом, А. ф. тесно связана с др. разделами физики и др. науками о природе. Представления об атоме, выработанные А. ф., имеют и важное мировоззренческое значение. "Устойчивость" атома объясняет устойчивость различных видов вещества, непреврати-мость хим. элементов в естеств. условиях, напр. при обычных на Земле темп-рах и давлениях. "Пластичность" же атома, изменение его свойств и состояний при изменении внешних условий, в к-рых он существует, объясняет возможность образования более сложных систем, качественно своеобразных, их способность приобретать различные формы внутр. организации. Так находит разрешение то противоречие между идеей о неизменных атомах и качественным многообразием веществ, к-рое существовало и в древности, и в новое время и служило основанием для критики атомизма.

Лит.: Бор Н., Три статьи о спектрах и строении атомов, пер. с нем., М.- П., 1923; Б о р н М., Современная физика, пер. с нем., М., 1965; Б р о и л ь Л., Революция в физике, пер. с франц., М., 1963; Шпольский Э. В., Атомная физика, 5 изд., т. 1, М., 1963.

М. А. Ельяшевич. Р. Я. Штейнман.

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ (АЭС), электростанция, в к-рой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор (см. Ядерный реактор). Тепло, к-рое выделяется в реакторе в результате цепной реакции деления ядер нек-рых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органич. топливе, АЭС работает на ядерном горючем (в осн. 233U, 235U. 239Рu). При делении 1 г изотопов урана или плутония высвобождается 22 500 квт • ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Установлено, что мировые энергетич. ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органич. топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологич. целей мировой химич. пром-сти, к-рая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органич. топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относит. увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, к-рая уже занимает заметное место в энергетич. балансе ряда пром. стран мира.

Первая в мире АЭС опытно-пром. назначения (рис. 1) мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась преим. в воен. целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Между-нар. научно-технич. конференции по мирному использованию атомной энергии (авг. 1955, Женева).

В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 Мвт (полная проектная мощность 600 Мвт). В том же году развернулось строительство Белоярской пром. АЭС, а 26 апр. 1964 генератор 1-й очереди (блок мощностью 100 Мвт) выдал ток в Свердловскую энергосистему. 2-й блок мощностью 200 Мвт сдан в эксплуатацию в октябре 1967. Отличительная особенность Белоярской АЭС - перегрев пара (до получения нужных параметров) непосредственно в ядерном реакторе, что позволило применить на ней обычные современные турбины почти без всяких переделок.

В сент. 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 Мвт. Себестоимость 1 квт • ч электроэнергии (важнейший экономич. показатель работы всякой электростанции) на этой АЭС систематически снижалась: она составляла 1,24 коп. в 1965, 1,22 коп. в 1966, 1,18 коп. в 1967, 0,94 коп. в 1968. Первый блок Нововоронежской АЭС был построен не только для пром. пользования, но и как демонстрац. объект для показа возможностей и преимуществ атомной энергетики, надёжности и безопасности работы АЭС. В нояб. 1965 в г. Мелекессе Ульяновской обл. вступила в строй АЭС с водо-водяным реактором "кипящего" типа мощностью 50 Мвт; реактор собран по одноконтурной схеме, облегчающей компоновку станции. В декабре 1969 был пущен второй блок Нововоронежской АЭС (350 Мвт).

За рубежом первая АЭС пром. назначения мощностью 46 Мвт была введена в эксплуатацию в 1956 в Колдер-Холле (Англия).Через год вступила в строй АЭС мощностью 60 Мвт в Шиппингпорте (США).

Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2. Тепло, выделяющееся в активной зоне реактора l, отбирается водой (теплоносителем) 1-го контура, к-рая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе, воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образующийся пар поступает в турбину 4.

Наиболее часто на АЭС применяются 4 типа реакторов на тепловых нейтронах: 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2) гра-фито-водные с водяным теплоносителем и графитовым замедлителем; З) тя-желоврдные с водяным теплоносителем и тяжёлой водой в качестве замедлителя; 4) графито-газовые с газовым теплоносителем и графитовым замедлителем.

Выбор преимущественно применяемого типа реактора определяется гл. обр. накопленным опытом в реакторостроснии,а также наличием необходимого пром. оборудования, сырьевых запасов и т. д. В СССР строят гл. обр. графито-водные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.

В зависимости от вида и агрегатного состояния теплоносителя создаётся тот или иной термодинамич. цикл АЭС. Выбор верхней температурной границы термодинамич. цикла определяется максимально допустимой темп-рой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное горючее, допустимой темп-рой собственно ядерного горючего, а также свойствами теплоносителя, принятого для данного типа реактора. На АЭС, тепловой реактор к-рой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и темп-рой. Тепловая схема АЭС о этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур - пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева
 
 
 

Рис. 3. Принципиальная тепловая схема АЭС с ядерным перегревом пара (2-й блок Белоярской АЭС): / - реактор; 2 - испарительный канал; 3 - пароперегревательный канал; 4-барабан-сепаратор; 5 - циркуляционный насос; 6 - деаэратор; 7 - турбина; 8 - конденсатор; 9 - конденсатный насос; 10 - регенеративный подогреватель низкого давления; 11 - питательный насос; 12 - регенеративные подогреватели высокого давления; 13 - генератор электрического тока.

(рис. 3). В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.

При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, т. е. ТВЭЛы выгорают. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанц. управлением. Отработавшие ТВЭЛы переносят в бассейн выдержки, а затем направляют на переработку.

К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой; теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура цирку-ляц. контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

В зависимости от конструктивного исполнения реакторы имеют отличит. особенности: в корпусных реакторах ТВЭЛы и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах ТВЭЛы, охлаждаемые теплоносителем, устанавливаются в спец. трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в СССР (Сибирская, Бело-ярская АЭС и др.).

Для предохранения персонала АЭС от радиац. облучения реактор окружают биологической защитой, осн. материалом для к-рой служат бетон, вода, серпенти-новый песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление неплотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности. Оборудование реакторного контура обычно устанавливают в герметичных боксах, к-рые отделены от остальных помещений АЭС биологич. защитой и при работе реактора не обслуживаются. Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС спец. системой вентиляции, в к-рой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки. За выполнением правил радиац. безопасности персоналом АЭС следит служба дозиметрич. контроля.

При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение неск. секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.

Наличие биологич. защиты, систем спец. вентиляции и аварийного расхолаживания и службы дозиметрич. контроля позволяет полностью обезопасить обслуживающий персонал АЭС от вредных воздействий радиоактивного облучения.

Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличит. особенность большинства АЭС - использование пара сравнительно низких параметров, насыщенного или слабоперегретого.

При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем что теплоноситель и содержащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.

В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяжённость коммуникаций, связанных с радиоактивными средами, повышенная жёсткость фундаментов и несущих конструкций реактора, надёжная организация вентиляции помещений. На рис. (см. вклейку к стр. 400) показан разрез главного корпуса Белоярской АЭС с канальным графито-водным реактором. В реакторном зале размещены: реактор с биологич. защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор-турбина. В машинном зале расположены турбогенераторы и обслуживающие их системы. Между машинным и реакторным залами размещены вспо-могат. оборудование и системы управления станцией.

Экономичность АЭС определяется её осн. технич. показателями: единичная мощность реактора, кпд, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэфф. использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в неё (стоимость установленного квт) снижаются более резко, чем это имеет место для ТЭС. В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии 30 - 40% (на ТЭС 60-70%). Поэтому крупные АЭС наиболее распространены в промышленно развитых районах с ограниченными запасами обычного топлива, а АЭС небольшой мощности - в труднодоступных или отдалённых районах, напр. АЭС в пос. Билибино (Якут. АССР) с электрич. мощностью типового блока 12 Мвт. Часть тепловой мощности реактора этой АЭС (29 Мвт) расходуется на теплоснабжение. Наряду с выработкой электроэнергии АЭС используются также для опреснения морской воды. Так, Шевченковская АЭС (Казах. ССР) электрич. мощностью 150 Мвт рассчитана на опреснение (методом дистилляции) за сутки до 150 000 m воды из Каспийского м.

В большинстве промышленно развитых стран (СССР, США, Англия, Франция, Канада, ФРГ, Япония, ГДР и др.) по прогнозам мощность действующих и строящихся АЭС к 1980 будет доведена до десятков Гвт. По данным Междунар. атомного агентства ООН, опубликованным в 1967, установленная мощность всех АЭС в мире к 1980 достигнет 300 Гвт.

В Сов. Союзе осуществляется широкая программа ввода в строй крупных энер-гетич. блоков (до 1000 Мвт) с реакторами на тепловых нейтронах. В 1948-49 были начаты работы по реакторам на быстрых нейтронах для пром. АЭС.Физич. особенности таких реакторов позволяют осуществить расширенное воспроиз-во ядерного горючего (коэфф. воспроиз-ва от 1,3 до 1,7), что даёт возможность использовать не только 233U, но и сырьевые материалы 238U и 232Th. Кроме того, реакторы на быстрых нейтронах не содержат замедлителя, имеют сравнительно малые размеры и большую загрузку. Этим и объясняется стремление к интенсивному развитию быстрых реакторов в СССР. Для исследований по быстрым реакторам были последовательно сооружены экспериментальные и опытные реакторы БР-1, БР-2, БР-3, БР-5, БФС. Полученный опыт обусловил переход от исследований модельных установок к проектированию и сооружению пром. АЭС на быстрых нейтронах (БН-350) в г. Шевченко и (БН-600) на Белоярской AЭC. Ведутся исследования реакторов для мощных АЭС, напр. в г. Мелекессе построен опытный реактор БОР-60.

Крупные АЭС сооружаются и в ряде развивающихся стран (Индия, Пакистан и др.).

На 3-й Междунар. научно-технич. конференции по мирному использованию атомной энергии (1964, Женева) было отмечено, что широкое освоение ядерной энергии стало ключевой проблемой для большинства стран. Состоявшаяся в Москве в авг. 1968 7-я Мировая энергетич. конференция (МИРЭК-VII) подтвердила актуальность проблем выбора направления развития ядерной энергетики на следующем этапе (условно 1980-2000), когда АЭС станет одним из осн. производителей электроэнергии.

Лит.: Некоторые вопросы ядерной энергетики. Сб. ст., под ред. М. А. Стыриковича, М., 1959; Канаев А. А., Атомные энергетические установки, Л., 1961; К а л а-ф а т п Д. Д-, Термодинамические циклы атомных электростанций, М.- Л., 1963; 10 лет Первой в мире атомной электростанции СССР. [Сб. ст.], М., 1964; Советская атомная наука и техника. [Сборник], М., 1967; Петросьянц А. М., Атомная энергетика наших дней, М.. 1968.

С. П. Кузнецов.

АТОМНАЯ ЭНЕРГИЯ, энергия, выделяющаяся в процессе превращения атомных ядер. Источником А. э. является внутренняя энергия атомного ядра. Более точное название А. э.- ядерная энергия.

"АТОМНАЯ ЭНЕРГИЯ", советский ежемесячный научно-технич. журнал, орган Гос. комитета по использованию атомной энергии СССР и АН СССР. Издаётся в Москве с 1956. Тематика журнала: ядерная энергетика, сырьё и материалы для атомной промышленности, применение изотопов и ионизующих излучений в нар. х-ве, радиан. безопасность, ядерное приборостроение, проблема управляемых термоядерных реакций и физика плазмы, непосредств. преобразование ядерной энергии в электрическую, ускорение заряженных частиц, нейтронная физика и физика деления атомных ядер. Тираж (1970) 2730 экз.

АТОМНО-ВОДОРОДНАЯ СВАРКА, электрич. сварка дугой перем. тока, горящей между двумя вольфрамовыми электродами в атмосфере водорода. Обрабатываемый металл не включают в цепь дуги (косвенный нагрев). В зону дуги подают водород (иногда диссоциированный аммиак). По способу действия А.-в. с. следует считать одним из видов плазменной сварки. Напряжение источника тока ок. 300 в, сила тока 20-80 а, диаметр электродов 1,5-4 мм. Водород диссоциирует с превращением двухатомного водорода в атомарный Hj-> 2Н, с затратой энергии ок. 400 Мдж/кмоль (100 000 кал/моль). На поверхности металла водород рекомбинирует в двухатомную форму., освобождает энергию диссоциации, передаёт её металлу и расплавляет его с образованием сварочной ванны. А.-в. с. нержавеющей стали и алюминия толщиной 1-5 мм применяют в незначит. размерах; её вытесняет аргоно-дуговая сварка. К. К. Хренов.

АТОМНОЕ ВРЕМЯ, система счёта времени, в к-рой единичный интервал времени определяется с помощью электромагнитных колебаний, излучаемых (или поглощаемых) атомами (или молекулами) нек-рых веществ. За предварит. единицу А. в. принята атомная секунда. Для измерения А. в. созданы устройства, называемые атомными и молекулярными часами (см. Квантовые стандарты частоты, Квантовые часы).

АТОМНОЕ ОРУЖИЕ, оружие, поражающее действие к-рого основано на использовании внутриядерной энергии. Более правильный термин - ядерное оружие.

АТОМНОЙ ЭНЕРГИИ ИНСТИТУТ им. И. В. К у р ч а т о в а        Г о с. к о м и т е т а       п о           и с п о л ь з о в а н и ю             а т о м н о й        э н е р г и и    С С С Р, создан в Москве в 1943 (до 1955 назывался Лабораторией № 2 АН СССР). Основателем и первым директором А. э. и. был акад. И. В. Курчатов (по 7 февраля 1960). После его смерти директором стал акад. А. П. Александров. В А. э. и. работает ряд видных учёных, среди них: академики АН СССР А. П. Александров, Л. А. Арцимович, Е. К. Завойский, И. К. Кикоин, М. А. Леонтович, А. Б. Мигдал, М.Д. Миллионщиков, чл.-корр. АН СССР Е. П. Велихов, И. И. Гуревич, Б. Б. Кадомцев, П. Е. Спивак.

В А. э. и. решались физ. задачи, связанные с использованием ядерной энергии: осуществлена первая в Европе цепная реакция деления урана в уран-графитовом котле (25 дек. 1946), развита теория гетерогенных ядерных реакторов, разработаны методы разделения изотопов, выполнены измерения ядерных констант, важных для развития цепной реакции, решён ряд проблем радиохимии. После успешного разрешения задач по укреплению обороны Сов. государства А. э. и. сосредоточил свои силы на ядерной энергетике и фундаментальных науч. проблемах. По физ. разработкам А. э. и. спроектировано и построено большинство исследовательских и энергетических атомных реакторов в СССР и других социалистич. странах, а также реактор ледокола "Ленин". А. э. и. является центром исследований по термоядерным реакциям и физике плазмы в СССР. Он ведёт обширную программу исследований по физике атомного ядра, физике твёрдого тела, а также работы по МГД-генераторам (магнито-гидродина-мическим генераторам) и др. методам прямого преобразования тепловой энергии в электрическую. Отдел молекулярной биологии занимает одно из ведущих мест в СССР.

А. э. и. располагает самым современным оборудованием. В нём работают первый в Европе реактор Ф-1; уран-бериллиево-графитовый реактор МР мощностью 40 Мвт с потоком нейтронов до 8*1014 см-2-сек~'; реакторы водо-водяные ВВР-2 и ИРТ-М на 2,5 и 5 Мвт соответственно; реактор с органическим теплоносителем ОР на 0,3 Мвт; уникальный циклотрон с регулируемой энергией, ускоряющий протоны (от 6 до 17 Мэв), дейтроны, Не3, Li++, Li+++ (циклотрон работает также в режиме спектрометра быстрых нейтронов от 0,5 до 25 Мэв); четыре электростатических генератора до 7 Мэв; электромагнитные разделители стабильных изотопов (А. э. и. является держателем фонда разделённых изотопов СССР); крупные термоядерные экспериментальные установки. А. э. и. обладает мощной криогенной базой для получения жидкого азота, неона и гелия, разветвлённой энергетич. системой и вспомогательными технологич. подразделениями.

От А. э. и. отпочковались в самостоят. учреждения Радиотехнич. ин-т (Москва), Лаборатория ядерных проблем и Лаборатория ядерных реакций Объединённого ин-та ядерных исследований (Дубна), Ин-т ядерной физики Сиб. отделения АН СССР (Новосибирск) и др.

И. Н. Головин.

АТОМНЫЕ ЕДИНИЦЫ МАССЫ, единицы измерения массы атомов, молекул и элементарных частиц. Для измерения массы атомов и молекул до 1961 в химии применялась А. е. м., определявшаяся как 1/16 атомной массы элемента кислорода и равная 1,66022-10-24 г. В физике за А. е. м. принималась 1/16 массы атома самого лёгкого из стабильных изотопов кислорода, массовое число которого (т. е. общее число протонов и нейтронов в ядре) равно 16. Физич. А. е. м. равнялась 1,65976*10-24г. Химич. А. е. м. в 1,000275 раза больше физической, т. к. природный кислород содержит 3 стабильных изотопа: 16О (99,76%), 17О(0,04%), 18О(0,20%). В 1961 была установлена как в физике, так и в химии унифицированная А. е. м., определяемая как 1/12 массы изотопа углерода с массовым числом 12, равная (1,66043+-0,00031)-10- 24 г. Унифицированная

А. е. м. равна 1,0003179 прежней физич. А. е. м. и весьма близка к прежней химич. А. е. м. Для элементарных частиц (электронов, нуклонов, мезонов и т. п.) в качестве единицы массы применяют массу электрона, равную 5,486-10-4 унифициров. А. е. м. или 9,1091•10- 28 г.

Л. А. Сена.

АТОМНЫЕ ПУЧКИ, см. Молекулярные пучки.

АТОМНЫЕ РАДИУСЫ, характеристики атомов, позволяющие приблизительно оценивать  межатомные расстояния в веществах. Согласно квантовой механике, атом не имеет определённых границ,но вероятность найти электрон на данном расстоянии от ядра атома, начиная с нек-рого расстояния, весьма быстро убывает. Поэтому можно приближённо приписать атому нек-рый размер. Для всех атомов этот размер порядка 10-8 см, т. е. 1 А или 0,1 нм. Опытные данные показывают, что, суммируя для атомов А и В значения величин, наз. А. р., во многих случаях удаётся получить значение межатомного расстояния АВ в хим. соединениях и кристаллах, близкое к истинному. Это свойство межатомных расстояний, наз. аддитивностью, оправдывает применение А. р. Последние подразделяются на металлические и ковалентные.

За металлич. радиус принимается половина кратчайшего межатомного расстояния в кристаллич. структуре элемента-металла. Металлич. радиус зависит от числа ближайших соседей атома в структуре (координационного числа К). Если принять А. р. при К = 12 (это значение К чаще всего встречается в металлах) за 100% , то А. р. при К=8, 6 и 4 составят 98, 96 и 88% соответственно. А. р. металлов применяют для предсказания возможности образования и анализа строения сплавов и интерметал-лич. соединений. Так, близость А. р.- необходимое, хотя и недостаточное условие взаимной растворимости металлов по типу замещения: магний (А. р. 1,60А) в широких пределах образует твёрдые растворы с литием (1,55 А) и практически не образует их с натрием и калием (1,89 А и 2,36 А). Аддитивность А. р. позволяет ориентировочно предсказывать параметры решёток интерметаллов (например, для тетрагональной структуры B-АlСr2, расчёт даёт а = 3,06 А, с = 8,60 А, соответствующие экспериментальные значения 3,00 А и 8,63 А). Ковалентные радиусы представляют собой половину длины ординарной связи X - X, где X - элемент-неметалл. Так, напр., в случае галогенов А. р.- это половина межатомного расстояния в молекулах Х2, для серы и селена - в молекулах Х8, для углерода - это половина длины связи в кристаллич. структуре алмаза или в молекулах предельных углеводородов. Повышение кратности связи (напр., в молекулах бензола, этилена, ацетилена) приводит к уменьшению её длины, что иногда учитывают введением соответствующей поправки. Приблизительно выполняющаяся аддитивность ковалент-ных радиусов позволяет вычислить их значения и для металлов (из длин ко-валентных связей Me - X, где Me - металл). В нек-рых исследованиях, сравнивая экспериментально найденные расстояния Me - X с суммами ковалентных радиусов и ионных радиусов, судят о степени ионности связи. Однако меж-

атомные расстояния X-X и Me - X заметно зависят от валентного состояния атомов. Последнее уменьшает универсальность ковалентных радиусов и ограничивает возможность их применения. О связи А. р. элементов с их положением в периодической системе см. Периодическая система элементов Д. И. Менделеева.

Лит.: Бокий Г. Б., Кристаллохимия, 2 изд., М., 1960; Жданов Г. С., физика твердого тела, М., 1962; Китайгородский А. И., Органическая кристаллохимия, М., 1955; Bastiansen О., Т г а е t-t e b e r g M-, The nature of bonds between carbon atoms, "Tetrahedron", 1962, v. 17, Mb 3. П. М. Зоркий.

АТОМНЫЕ СПЕКТРЫ, спектры оптические, получающиеся при испускании или поглощении света (электромагнитных волн) свободными или слабо связанными атомами; такими спектрами обладают, в частности, одноатомные газы и пары. А. с. являются л и н е й ч ат ы м и - они состоят из отдельных с п е к т р а л ь н ы х л и н и й . А. с. наблюдаются в виде ярких цветных линий при свечении газов или паров в электрич. дуге или разряде (спектры испускания) и в виде тёмных линий (спектров поглощения). Каждая спектральная линия характеризуется определённой частотой колебаний v испускаемого или поглощаемого света и соответствует определённому квантовому переходу между уровнями энергии Et и Еи атома согласно соотношению: hv= Et - Eh, где h - Планка постоянная). Наряду с частотой спектральную линию можно характеризовать длиной волны X=c/v, волновым числом 1/Л = V1с (с - скорость света) и энергией фотона hv.

А. с. возникают при переходах между уровнями энергии внешних электронов атома и наблюдаются в видимой, ультрафиолетовой и близкой инфракрасной областях. Такими спектрами обладают как нейтральные, так и ионизованные атомы; их часто наз. соответственно дуговыми и искровыми спектрами (нейтральные атомы легко возбуждаются и дают спектры испускания в электрич. дугах, а положит. ионы возбуждаются труднее и дают спектры испускания преим. в искровых электрич. разрядах). Спектры ионизованных атомов смещены по отношению к спектрам нейтральных атомов в область больших частот, т. е. в ультрафиолетовую область. Это смещение тем больше, чем выше кратность ионизации атома - чем больше электронов он потерял. Спектры нейтрального атома и его последовательных ионов обозначают в спектроскопии цифрами I, II, III, ... В реально наблюдаемых спектрах часто присутствуют одновременно линии нейтрального и ионизованных атомов; так говорят, напр., о линиях Fel, Fell, Felll в спектре железа, соответствующих Fe, Fe+, Fe2+.

Линии А. с. образуют закономерные группы, наз. с п е к т р а л ь н ы м и с е р и я м и. Промежутки между линиями в серии убывают в сторону коротких длин волн, и линии сходятся к г р ан и ц е с е р и и. Наиболее прост спектр атома водорода. Волновые числа линий его спектра с огромной точностью определяются формулой Бальмера:

где n1 и n2 - значения главного квантового числа для уровней энергии, между к-рыми происходит квантовый переход

Жёлтая линия в спектре атома Na (дублет X = 5690 А и X =5696 А).

(см. Атом, рис. 1,6). Значение ni = l, 2, 3, ... определяет серию, а значение n2=n1 + 1, Ni + 2, n1+З,... определяет отд. линии данной серии; R - Ридберга постоянная (выраженная в волновых числах). При n1 = l получается серия Лаймана, лежащая в далёкой ультрафиолетовой области спектра, при n1=2 - серия Бальмера, линии к-рой расположены в видимой и близкой ультрафиолетовой областях. Серии Пашена (n1 =3), Брэкета (n1 =4), Пфаунда (n1=5), Хамфри (n1=6) лежат в инфракрасной области спектра. Аналогичными спектрами, только с увеличенным в Z2 раз масштабом (Z - атомный номер), обладают водородоподобные ионы Не+, 1i2+, ...(спектры Hell, Lilll,...).

Спектры атомов щелочных металлов, обладающих одним внешним (оптическим) электроном помимо заполненных оболочек, схожи со спектром атома водорода, но смещены в область меньших частот; число спектральных серий увеличивается, а закономерности в расположении линий усложняются. Пример - спектр Na, атом которого обладает нормальной электронной конфигурацией Is2 2s2 2p6 3s (см. в ст. Атом - Заполнение электронных оболочек и слоев) с легко возбуждаемым внешним электроном 3s; переходу этого электрона из состояния 3s в состояние Зр соответствует жёлтая линия Na (д у б л ет X, = 5690А и Х.=569бА; см. рис.), с к-рой начинается т. н. г л а в н а я        с е р и я N a, члены к-рой соответствуют переходам между состоянием 3s и состояниями Зр, 4р, 5р,...; граница серии соответствует ионизации атома Na.

Для атомов с двумя или неск. внешними электронами спектры значительно усложняются, что обусловлено взаимодействием электронов. А. с. особенно сложны для атомов с заполняющимися а- и f-оболочками; число линий доходит до многих тысяч, и уже нельзя обнаружить простых серий, аналогичных сериям в спектрах водорода и щелочных металлов. Однако и в сложных спектрах можно установить определённые закономерности в расположении линий, произвести систематику спектра и определить схему уровней энергии.

Систематика спектров атомов с двумя или более внешними электронами основана на приближённой характеристике отдельных электронов при помощи квантовых чисел п и L (см. Атом) с учётом взаимодействия этих электронов друг с другом. При этом приходится учитывать электростатич. взаимодействия электронов - отталкивание по закону Кулона, и магнитные взаимодействия спиновых и орбитальных моментов (см. Спин, Спин-орбитальное взаимодействие), к-рые приводят к тонкому расщеплению уровней энергии (см. Тонкая структура). Благодаря этому у большинства атомов спектральные линии представляют собой более или менее тесную группу линий, называемую мультиплетом. Так, у всех щелочных металлов линии двойные (д у б-л е т ы), причём расстояния между мультиплетными уровнями увеличиваются с увеличением атомного номера элемента. У щёлочноземельных элементов наблюдаются одиночные линии (сингулеты) и тройные (т р и п л е т ы). Спектры следующих столбцов таблицы Менделеева образуют всё более сложные мультипле-ты, причём нечётным столбцам соответствуют чётные мультиплеты, а чётным столбцам - нечётные.

Кроме тонкой структуры, в А. с. наблюдается сверхтонкая структура, обусловленная магнитными моментами ядер. Сверхтонкая структура по порядку величины в 1000 раз уже обычной муль-типлетной структуры и исследуется методами радиоспектроскопии.

В А. с. проявляются не все переходы между уровнями энергии данного атома или иона, а лишь вполне определённые, допускаемые (разрешённые) т. н. отбора правилами, зависящими от характеристик уровней энергии. В случае одного внешнего электрона возможны лишь переходы, для к-рых азимутальное квантовое число / увеличивается или уменьшается на 1; правило отбора имеет вид: дl = ±1. В результате s-уровни (l=0) комбинируют с р-уровня-ми (L = 1), р-уровни -с d-уровнями (L = 2) и т. д., что определяет возможные спектральные серии для атомов щелочных металлов, частный случай которых представляет главная серия Na (переходы 3s>np, где n=3, 4, 5,...); другие переходы этим правилом отбора запрещены. Для многоэлектронных атомов правила отбора имеют более сложный пил.

Количественной характеристикой разрешённого оптич. перехода является его в е р о я т н о с т ь (см. Вероятность перехода), определяющая, как часто этот переход может происходить; вероятность запрещённых переходов равна нулю. От вероятностей переходов зависят и н т е н с и в н о с т и спектральных линий. В простейших случаях вероятности переходов для А. с. могут быть рассчитаны по методам квантовой механики.

Наряду с изучением А. с. для свободных атомов значительный интерес представляет исследование изменений в А. с. при внешних воздействиях на атомы. Под действием внешнего магнитного или электрич. поля происходит расщепление уровней энергии атома и соответствующее расщепление спектральных линий (см. Зеемана явление я Штарка явление).

Исследование А. с. сыграло важную роль в развитии представлений о строении атома (см. Атомная физика). Методы, основанные на изучении А. с., очень широко распространены в различных областях науки и техники. А. с. позволяют определить ряд весьма важных характеристик атомов и получить ценные сведения о строении электронных оболочек атома. Чрезвычайно существенно применение А. с. в эмиссионном спектральном анализе (по А. с. испускания), к-рый благодаря высокой чувствительности, быстроте и универсальности завоевал прочное место в металлургии, горнорудной пром-сти, машиностроении и во многих др. отраслях нар. х-ва; наряду с эмиссионным спектральным анализом успешно применяют и абсорбционный спектральный анализ (по А. с. поглощения).

Лит.: Шпольский Э. В., Атомная физика, 5 изд.. т. 1, М., 1963, т. 2, М.. 195U ф р и ш С. Э., Оптические спектры атомов"

М.- Л., 1963; Ельяшевич М. А., Атомная и молекулярная спектроскопия, М., 1962. М. А. Ельяшевич.
 

Rambler's Top100